Viewing File: /home/ubuntu/.local/lib/python3.10/site-packages/ctranslate2/converters/opennmt_py.py
import argparse
from ctranslate2.converters import utils
from ctranslate2.converters.converter import Converter
from ctranslate2.specs import common_spec, transformer_spec
_SUPPORTED_ACTIVATIONS = {
"gelu": common_spec.Activation.GELU,
"fast_gelu": common_spec.Activation.GELUTanh,
"relu": common_spec.Activation.RELU,
"silu": common_spec.Activation.SWISH,
}
_SUPPORTED_FEATURES_MERGE = {
"concat": common_spec.EmbeddingsMerge.CONCAT,
"sum": common_spec.EmbeddingsMerge.ADD,
}
def check_opt(opt, num_source_embeddings):
with_relative_position = getattr(opt, "max_relative_positions", 0) > 0
with_rotary = getattr(opt, "max_relative_positions", 0) == -1
with_alibi = getattr(opt, "max_relative_positions", 0) == -2
activation_fn = getattr(opt, "pos_ffn_activation_fn", "relu")
feat_merge = getattr(opt, "feat_merge", "concat")
self_attn_type = getattr(opt, "self_attn_type", "scaled-dot")
check = utils.ConfigurationChecker()
check(
opt.encoder_type == opt.decoder_type
and opt.decoder_type in {"transformer", "transformer_lm"},
"Options --encoder_type and --decoder_type must be"
" 'transformer' or 'transformer_lm",
)
check(
self_attn_type == "scaled-dot",
"Option --self_attn_type %s is not supported (supported values are: scaled-dot)"
% self_attn_type,
)
check(
activation_fn in _SUPPORTED_ACTIVATIONS,
"Option --pos_ffn_activation_fn %s is not supported (supported activations are: %s)"
% (activation_fn, ", ".join(_SUPPORTED_ACTIVATIONS.keys())),
)
check(
opt.position_encoding != (with_relative_position or with_rotary or with_alibi),
"Options --position_encoding and --max_relative_positions cannot be both enabled "
"or both disabled",
)
check(
num_source_embeddings == 1 or feat_merge in _SUPPORTED_FEATURES_MERGE,
"Option --feat_merge %s is not supported (supported merge modes are: %s)"
% (feat_merge, " ".join(_SUPPORTED_FEATURES_MERGE.keys())),
)
check.validate()
def _get_model_spec_seq2seq(
opt, variables, src_vocabs, tgt_vocabs, num_source_embeddings
):
"""Creates a model specification from the model options."""
with_relative_position = getattr(opt, "max_relative_positions", 0) > 0
activation_fn = getattr(opt, "pos_ffn_activation_fn", "relu")
feat_merge = getattr(opt, "feat_merge", "concat")
# Return the first head of the last layer unless the model was trained with alignments.
if getattr(opt, "lambda_align", 0) == 0:
alignment_layer = -1
alignment_heads = 1
else:
alignment_layer = opt.alignment_layer
alignment_heads = opt.alignment_heads
num_heads = getattr(opt, "heads", 8)
model_spec = transformer_spec.TransformerSpec.from_config(
(opt.enc_layers, opt.dec_layers),
num_heads,
with_relative_position=with_relative_position,
activation=_SUPPORTED_ACTIVATIONS[activation_fn],
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
num_source_embeddings=num_source_embeddings,
embeddings_merge=_SUPPORTED_FEATURES_MERGE[feat_merge],
multi_query_attention=getattr(opt, "multiquery", False),
)
model_spec.config.decoder_start_token = getattr(opt, "decoder_start_token", "<s>")
set_transformer_spec(model_spec, variables)
for src_vocab in src_vocabs:
model_spec.register_source_vocabulary(src_vocab)
for tgt_vocab in tgt_vocabs:
model_spec.register_target_vocabulary(tgt_vocab)
return model_spec
def _get_model_spec_lm(opt, variables, src_vocabs, tgt_vocabs, num_source_embeddings):
"""Creates a model specification from the model options."""
with_relative_position = getattr(opt, "max_relative_positions", 0) > 0
with_rotary = getattr(opt, "max_relative_positions", 0) == -1
with_alibi = getattr(opt, "max_relative_positions", 0) == -2
activation_fn = getattr(opt, "pos_ffn_activation_fn", "relu")
num_heads = getattr(opt, "heads", 8)
num_kv = getattr(opt, "num_kv", 0)
if num_kv == num_heads or num_kv == 0:
num_kv = None
rotary_dim = 0 if with_rotary else None
rotary_interleave = getattr(opt, "rotary_interleave", True)
ffn_glu = activation_fn == "silu"
sliding_window = getattr(opt, "sliding_window", 0)
model_spec = transformer_spec.TransformerDecoderModelSpec.from_config(
opt.dec_layers,
num_heads,
activation=_SUPPORTED_ACTIVATIONS[activation_fn],
ffn_glu=ffn_glu,
with_relative_position=with_relative_position,
alibi=with_alibi,
rms_norm=opt.layer_norm == "rms",
rotary_dim=rotary_dim,
rotary_interleave=rotary_interleave,
multi_query_attention=getattr(opt, "multiquery", False),
num_heads_kv=num_kv,
sliding_window=sliding_window,
)
model_spec.config.layer_norm_epsilon = getattr(opt, "norm_eps", 1e-6)
set_transformer_decoder(
model_spec.decoder,
variables,
with_encoder_attention=False,
)
for tgt_vocab in tgt_vocabs:
model_spec.register_vocabulary(tgt_vocab)
return model_spec
def get_vocabs(vocab):
if isinstance(vocab, dict) and "src" in vocab:
if isinstance(vocab["src"], list):
src_vocabs = [vocab["src"]]
tgt_vocabs = [vocab["tgt"]]
src_feats = vocab.get("src_feats")
if src_feats is not None:
src_vocabs.extend(src_feats.values())
else:
src_vocabs = [field[1].vocab.itos for field in vocab["src"].fields]
tgt_vocabs = [field[1].vocab.itos for field in vocab["tgt"].fields]
else:
# Compatibility with older models.
src_vocabs = [vocab[0][1].itos]
tgt_vocabs = [vocab[1][1].itos]
return src_vocabs, tgt_vocabs
class OpenNMTPyConverter(Converter):
"""Converts models generated by OpenNMT-py."""
def __init__(self, model_path: str):
"""Initializes the OpenNMT-py converter.
Arguments:
model_path: Path to the OpenNMT-py PyTorch model (.pt file).
"""
self._model_path = model_path
def _load(self):
import torch
checkpoint = torch.load(self._model_path, map_location="cpu")
src_vocabs, tgt_vocabs = get_vocabs(checkpoint["vocab"])
check_opt(checkpoint["opt"], num_source_embeddings=len(src_vocabs))
variables = checkpoint["model"]
variables.update(
{
"generator.%s" % key: value
for key, value in checkpoint["generator"].items()
}
)
if checkpoint["opt"].decoder_type == "transformer_lm":
return _get_model_spec_lm(
checkpoint["opt"],
variables,
src_vocabs,
tgt_vocabs,
num_source_embeddings=len(src_vocabs),
)
else:
return _get_model_spec_seq2seq(
checkpoint["opt"],
variables,
src_vocabs,
tgt_vocabs,
num_source_embeddings=len(src_vocabs),
)
def set_transformer_spec(spec, variables):
set_transformer_encoder(spec.encoder, variables)
set_transformer_decoder(spec.decoder, variables)
def set_transformer_encoder(spec, variables):
set_input_layers(spec, variables, "encoder")
set_layer_norm(spec.layer_norm, variables, "encoder.layer_norm")
for i, layer in enumerate(spec.layer):
set_transformer_encoder_layer(layer, variables, "encoder.transformer.%d" % i)
def set_transformer_decoder(spec, variables, with_encoder_attention=True):
set_input_layers(spec, variables, "decoder")
set_layer_norm(spec.layer_norm, variables, "decoder.layer_norm")
for i, layer in enumerate(spec.layer):
set_transformer_decoder_layer(
layer,
variables,
"decoder.transformer_layers.%d" % i,
with_encoder_attention=with_encoder_attention,
)
try:
set_linear(spec.projection, variables, "generator")
except KeyError:
# Compatibility when the generator was a nn.Sequential module.
set_linear(spec.projection, variables, "generator.0")
def set_input_layers(spec, variables, scope):
if hasattr(spec, "position_encodings"):
set_position_encodings(
spec.position_encodings,
variables,
"%s.embeddings.make_embedding.pe" % scope,
)
else:
# See https://github.com/OpenNMT/OpenNMT-py/issues/1722
spec.scale_embeddings = False
embeddings_specs = spec.embeddings
if not isinstance(embeddings_specs, list):
embeddings_specs = [embeddings_specs]
for i, embeddings_spec in enumerate(embeddings_specs):
set_embeddings(
embeddings_spec,
variables,
"%s.embeddings.make_embedding.emb_luts.%d" % (scope, i),
)
def set_transformer_encoder_layer(spec, variables, scope):
set_ffn(spec.ffn, variables, "%s.feed_forward" % scope)
set_multi_head_attention(
spec.self_attention,
variables,
"%s.self_attn" % scope,
self_attention=True,
)
set_layer_norm(spec.self_attention.layer_norm, variables, "%s.layer_norm" % scope)
def set_transformer_decoder_layer(spec, variables, scope, with_encoder_attention=True):
set_ffn(spec.ffn, variables, "%s.feed_forward" % scope)
set_multi_head_attention(
spec.self_attention,
variables,
"%s.self_attn" % scope,
self_attention=True,
)
set_layer_norm(spec.self_attention.layer_norm, variables, "%s.layer_norm_1" % scope)
if with_encoder_attention:
set_multi_head_attention(spec.attention, variables, "%s.context_attn" % scope)
set_layer_norm(spec.attention.layer_norm, variables, "%s.layer_norm_2" % scope)
def set_ffn(spec, variables, scope):
set_layer_norm(spec.layer_norm, variables, "%s.layer_norm" % scope)
set_linear(spec.linear_0, variables, "%s.w_1" % scope)
set_linear(spec.linear_1, variables, "%s.w_2" % scope)
if hasattr(spec, "linear_0_noact"):
set_linear(spec.linear_0_noact, variables, "%s.w_3" % scope)
def set_multi_head_attention(spec, variables, scope, self_attention=False):
if self_attention:
split_layers = [common_spec.LinearSpec() for _ in range(3)]
set_linear(split_layers[0], variables, "%s.linear_query" % scope)
set_linear(split_layers[1], variables, "%s.linear_keys" % scope)
set_linear(split_layers[2], variables, "%s.linear_values" % scope)
utils.fuse_linear(spec.linear[0], split_layers)
else:
set_linear(spec.linear[0], variables, "%s.linear_query" % scope)
split_layers = [common_spec.LinearSpec() for _ in range(2)]
set_linear(split_layers[0], variables, "%s.linear_keys" % scope)
set_linear(split_layers[1], variables, "%s.linear_values" % scope)
utils.fuse_linear(spec.linear[1], split_layers)
set_linear(spec.linear[-1], variables, "%s.final_linear" % scope)
if hasattr(spec, "relative_position_keys"):
spec.relative_position_keys = _get_variable(
variables, "%s.relative_positions_embeddings.weight" % scope
)
spec.relative_position_values = spec.relative_position_keys
def set_layer_norm(spec, variables, scope):
try:
spec.gamma = _get_variable(variables, "%s.weight" % scope)
except KeyError:
# Compatibility with older models using a custom LayerNorm module.
spec.gamma = _get_variable(variables, "%s.a_2" % scope)
spec.beta = _get_variable(variables, "%s.b_2" % scope)
try:
spec.beta = _get_variable(variables, "%s.bias" % scope)
except KeyError:
pass
def set_linear(spec, variables, scope):
spec.weight = _get_variable(variables, "%s.weight" % scope)
bias = variables.get("%s.bias" % scope)
if bias is not None:
spec.bias = bias
def set_embeddings(spec, variables, scope):
spec.weight = _get_variable(variables, "%s.weight" % scope)
def set_position_encodings(spec, variables, scope):
spec.encodings = _get_variable(variables, "%s.pe" % scope).squeeze()
def _get_variable(variables, name):
return variables[name]
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--model_path", required=True, help="Model path.")
Converter.declare_arguments(parser)
args = parser.parse_args()
OpenNMTPyConverter(args.model_path).convert_from_args(args)
if __name__ == "__main__":
main()
Back to Directory
File Manager