Viewing File: /home/ubuntu/.local/lib/python3.10/site-packages/fastai/distributed.py
from .torch_core import *
from .basic_train import Learner,LearnerCallback
from torch.nn.parallel import DistributedDataParallel, DataParallel
from torch.utils.data.distributed import DistributedSampler
__all__ = ['DistributedRecorder', 'DistributedTrainer', 'read_metrics', 'setup_distrib']
def rnn_reset(self):
if hasattr(self.module, 'reset'): self.module.reset()
DistributedDataParallel.reset = rnn_reset
def make_async(b:Tuple[Tensor,Tensor]):
return [o.to(o.device, non_blocking=True) for o in b]
class ParallelTrainer(LearnerCallback):
_order = -20
def on_train_begin(self, **kwargs): self.learn.model = DataParallel(self.learn.model)
def on_train_end (self, **kwargs): self.learn.model = self.learn.model.module
class DistributedTrainer(LearnerCallback):
_order = -20 # Needs to run before the recorder
def __init__(self, learn:Learner, cuda_id:int=0):
super().__init__(learn)
self.cuda_id,self.train_sampler = cuda_id,None
def on_train_begin(self, **kwargs):
self.learn.model = DistributedDataParallel(self.learn.model, device_ids=[self.cuda_id],
output_device=self.cuda_id)
self.train_sampler = DistributedSampler(self.learn.data.train_dl.dataset)
self.learn.data.train_dl = self.learn.data.train_dl.new(shuffle=False, sampler=self.train_sampler)
self.learn.data.train_dl.add_tfm(make_async)
if hasattr(self.learn.data, 'valid_dl') and self.learn.data.valid_dl is not None:
self.valid_sampler = DistributedSampler(self.learn.data.valid_dl.dataset)
self.learn.data.valid_dl = self.learn.data.valid_dl.new(shuffle=False, sampler=self.valid_sampler)
self.learn.data.valid_dl.add_tfm(make_async)
self.rank = rank_distrib()
self.learn.recorder.silent = (self.rank != 0)
def on_epoch_begin(self, epoch, **kwargs): self.train_sampler.set_epoch(epoch)
def on_train_end(self, **kwargs):
self.learn.model = self.learn.model.module
self.learn.data.train_dl.remove_tfm(make_async)
if hasattr(self.learn.data, 'valid_dl') and self.learn.data.valid_dl is not None:
self.learn.data.valid_dl.remove_tfm(make_async)
class DistributedRecorder(LearnerCallback):
def __init__(self, learn:Learner, cuda_id:int=0, cache_dir:PathOrStr='tmp'):
super().__init__(learn)
self.cuda_id,self.cache_dir = cuda_id,cache_dir
def on_train_begin(self, **kwargs):
os.makedirs(self.learn.path/self.cache_dir, exist_ok=True)
def on_epoch_end(self, **kwargs): self.save_stats()
def on_train_end(self, **kwargs): self.save_stats()
def save_stats(self):
cache_path,recorder = self.learn.path/self.cache_dir,self.learn.recorder
np.save(cache_path/f'losses_{self.cuda_id}', np.array(recorder.losses))
stats = np.array([[v] + m for v,m in zip(recorder.val_losses,recorder.metrics)])
np.save(cache_path/f'metrics_{self.cuda_id}', stats)
def _learner_parallel(learn:Learner):
"Use nn.DataParallel when training and remove when done"
learn.callbacks.append(ParallelTrainer(learn))
return learn
def _learner_distributed(learn:Learner, cuda_id:int, cache_dir:PathOrStr='tmp'):
"Put `learn` on distributed training with `cuda_id`."
learn.callbacks.append(DistributedTrainer(learn, cuda_id))
learn.callbacks.append(DistributedRecorder(learn, cuda_id, cache_dir))
return learn
Learner.to_distributed = _learner_distributed
Learner.to_parallel = _learner_parallel
def read_metrics(cache_path:PathOrStr, n_gpus:int, reduce:bool=True):
losses,metrics = [],[]
for i in range(n_gpus):
losses.append(np.load(cache_path/f'losses_{i}.npy')[None])
metrics.append(np.load(cache_path/f'metrics_{i}.npy')[None])
if reduce:
losses,metrics = np.concatenate(losses,0),np.concatenate(metrics,0)
return losses.mean(0),metrics.mean(0)
return losses,metrics
def setup_distrib(gpu:Any=None):
if gpu is None: return gpu
gpu = int(gpu)
torch.cuda.set_device(int(gpu))
if num_distrib() > 1:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
return gpu
Back to Directory
File Manager