Viewing File: /home/ubuntu/.local/lib/python3.10/site-packages/sklearn/neighbors/_kd_tree.pyx.tp

{{py:

# Generated file: _kd_tree.pyx

implementation_specific_values = [
    # The values are arranged as follows:
    #
    #       name_suffix, INPUT_DTYPE_t, INPUT_DTYPE
    #
    ('64', 'float64_t', 'np.float64'),
    ('32', 'float32_t', 'np.float32')
]

# By Jake Vanderplas (2013) <jakevdp@cs.washington.edu>
# written for the scikit-learn project
# License: BSD

}}


__all__ = ['KDTree', 'KDTree64', 'KDTree32']

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

DOC_DICT{{name_suffix}} = {
    'BinaryTree': 'KDTree{{name_suffix}}',
    'binary_tree': 'kd_tree{{name_suffix}}',
}

VALID_METRICS{{name_suffix}} = [
    'EuclideanDistance{{name_suffix}}',
    'ManhattanDistance{{name_suffix}}',
    'ChebyshevDistance{{name_suffix}}',
    'MinkowskiDistance{{name_suffix}}'
]

{{endfor}}

include "_binary_tree.pxi"

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

# Inherit KDTree{{name_suffix}} from BinaryTree{{name_suffix}}
cdef class KDTree{{name_suffix}}(BinaryTree{{name_suffix}}):
    __doc__ = CLASS_DOC.format(**DOC_DICT{{name_suffix}})
    pass

{{endfor}}


# ----------------------------------------------------------------------
# The functions below specialized the Binary Tree as a KD Tree
#
#   Note that these functions use the concept of "reduced distance".
#   The reduced distance, defined for some metrics, is a quantity which
#   is more efficient to compute than the distance, but preserves the
#   relative rankings of the true distance.  For example, the reduced
#   distance for the Euclidean metric is the squared-euclidean distance.
#   For some metrics, the reduced distance is simply the distance.

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

cdef int allocate_data{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t n_nodes,
    intp_t n_features,
) except -1:
    """Allocate arrays needed for the KD Tree"""
    tree.node_bounds = np.zeros((2, n_nodes, n_features), dtype={{INPUT_DTYPE}})
    return 0


cdef int init_node{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    NodeData_t[::1] node_data,
    intp_t i_node,
    intp_t idx_start,
    intp_t idx_end,
) except -1:
    """Initialize the node for the dataset stored in tree.data"""
    cdef intp_t n_features = tree.data.shape[1]
    cdef intp_t i, j
    cdef float64_t rad = 0

    cdef {{INPUT_DTYPE_t}}* lower_bounds = &tree.node_bounds[0, i_node, 0]
    cdef {{INPUT_DTYPE_t}}* upper_bounds = &tree.node_bounds[1, i_node, 0]
    cdef const {{INPUT_DTYPE_t}}* data = &tree.data[0, 0]
    cdef const intp_t* idx_array = &tree.idx_array[0]

    cdef const {{INPUT_DTYPE_t}}* data_row

    # determine Node bounds
    for j in range(n_features):
        lower_bounds[j] = INF
        upper_bounds[j] = -INF

    # Compute the actual data range.  At build time, this is slightly
    # slower than using the previously-computed bounds of the parent node,
    # but leads to more compact trees and thus faster queries.
    for i in range(idx_start, idx_end):
        data_row = data + idx_array[i] * n_features
        for j in range(n_features):
            lower_bounds[j] = fmin(lower_bounds[j], data_row[j])
            upper_bounds[j] = fmax(upper_bounds[j], data_row[j])

    for j in range(n_features):
        if tree.dist_metric.p == INF:
            rad = fmax(rad, 0.5 * (upper_bounds[j] - lower_bounds[j]))
        else:
            rad += pow(0.5 * abs(upper_bounds[j] - lower_bounds[j]),
                       tree.dist_metric.p)

    node_data[i_node].idx_start = idx_start
    node_data[i_node].idx_end = idx_end

    # The radius will hold the size of the circumscribed hypersphere measured
    # with the specified metric: in querying, this is used as a measure of the
    # size of each node when deciding which nodes to split.
    node_data[i_node].radius = pow(rad, 1. / tree.dist_metric.p)
    return 0


cdef float64_t min_rdist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1 nogil:
    """Compute the minimum reduced-distance between a point and a node"""
    cdef intp_t n_features = tree.data.shape[1]
    cdef float64_t d, d_lo, d_hi, rdist=0.0
    cdef intp_t j

    if tree.dist_metric.p == INF:
        for j in range(n_features):
            d_lo = tree.node_bounds[0, i_node, j] - pt[j]
            d_hi = pt[j] - tree.node_bounds[1, i_node, j]
            d = (d_lo + fabs(d_lo)) + (d_hi + fabs(d_hi))
            rdist = fmax(rdist, 0.5 * d)
    else:
        # here we'll use the fact that x + abs(x) = 2 * max(x, 0)
        for j in range(n_features):
            d_lo = tree.node_bounds[0, i_node, j] - pt[j]
            d_hi = pt[j] - tree.node_bounds[1, i_node, j]
            d = (d_lo + fabs(d_lo)) + (d_hi + fabs(d_hi))
            rdist += pow(0.5 * d, tree.dist_metric.p)

    return rdist


cdef float64_t min_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1:
    """Compute the minimum distance between a point and a node"""
    if tree.dist_metric.p == INF:
        return min_rdist{{name_suffix}}(tree, i_node, pt)
    else:
        return pow(
            min_rdist{{name_suffix}}(tree, i_node, pt),
            1. / tree.dist_metric.p
        )


cdef float64_t max_rdist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1:
    """Compute the maximum reduced-distance between a point and a node"""
    cdef intp_t n_features = tree.data.shape[1]

    cdef float64_t d_lo, d_hi, rdist=0.0
    cdef intp_t j

    if tree.dist_metric.p == INF:
        for j in range(n_features):
            rdist = fmax(rdist, fabs(pt[j] - tree.node_bounds[0, i_node, j]))
            rdist = fmax(rdist, fabs(pt[j] - tree.node_bounds[1, i_node, j]))
    else:
        for j in range(n_features):
            d_lo = fabs(pt[j] - tree.node_bounds[0, i_node, j])
            d_hi = fabs(pt[j] - tree.node_bounds[1, i_node, j])
            rdist += pow(fmax(d_lo, d_hi), tree.dist_metric.p)

    return rdist


cdef float64_t max_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1:
    """Compute the maximum distance between a point and a node"""
    if tree.dist_metric.p == INF:
        return max_rdist{{name_suffix}}(tree, i_node, pt)
    else:
        return pow(
            max_rdist{{name_suffix}}(tree, i_node, pt),
            1. / tree.dist_metric.p
        )


cdef inline int min_max_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
    float64_t* min_dist,
    float64_t* max_dist,
) except -1 nogil:
    """Compute the minimum and maximum distance between a point and a node"""
    cdef intp_t n_features = tree.data.shape[1]

    cdef float64_t d, d_lo, d_hi
    cdef intp_t j

    min_dist[0] = 0.0
    max_dist[0] = 0.0

    if tree.dist_metric.p == INF:
        for j in range(n_features):
            d_lo = tree.node_bounds[0, i_node, j] - pt[j]
            d_hi = pt[j] - tree.node_bounds[1, i_node, j]
            d = (d_lo + fabs(d_lo)) + (d_hi + fabs(d_hi))
            min_dist[0] = fmax(min_dist[0], 0.5 * d)
            max_dist[0] = fmax(max_dist[0], fabs(d_lo))
            max_dist[0] = fmax(max_dist[0], fabs(d_hi))
    else:
        # as above, use the fact that x + abs(x) = 2 * max(x, 0)
        for j in range(n_features):
            d_lo = tree.node_bounds[0, i_node, j] - pt[j]
            d_hi = pt[j] - tree.node_bounds[1, i_node, j]
            d = (d_lo + fabs(d_lo)) + (d_hi + fabs(d_hi))
            min_dist[0] += pow(0.5 * d, tree.dist_metric.p)
            max_dist[0] += pow(fmax(fabs(d_lo), fabs(d_hi)),
                               tree.dist_metric.p)

        min_dist[0] = pow(min_dist[0], 1. / tree.dist_metric.p)
        max_dist[0] = pow(max_dist[0], 1. / tree.dist_metric.p)

    return 0


cdef inline float64_t min_rdist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """Compute the minimum reduced distance between two nodes"""
    cdef intp_t n_features = tree1.data.shape[1]

    cdef float64_t d, d1, d2, rdist=0.0
    cdef intp_t j

    if tree1.dist_metric.p == INF:
        for j in range(n_features):
            d1 = (tree1.node_bounds[0, i_node1, j]
                  - tree2.node_bounds[1, i_node2, j])
            d2 = (tree2.node_bounds[0, i_node2, j]
                  - tree1.node_bounds[1, i_node1, j])
            d = (d1 + fabs(d1)) + (d2 + fabs(d2))

            rdist = fmax(rdist, 0.5 * d)
    else:
        # here we'll use the fact that x + abs(x) = 2 * max(x, 0)
        for j in range(n_features):
            d1 = (tree1.node_bounds[0, i_node1, j]
                  - tree2.node_bounds[1, i_node2, j])
            d2 = (tree2.node_bounds[0, i_node2, j]
                  - tree1.node_bounds[1, i_node1, j])
            d = (d1 + fabs(d1)) + (d2 + fabs(d2))

            rdist += pow(0.5 * d, tree1.dist_metric.p)

    return rdist


cdef inline float64_t min_dist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """Compute the minimum distance between two nodes"""
    return tree1.dist_metric._rdist_to_dist(
        min_rdist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
    )


cdef inline float64_t max_rdist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """Compute the maximum reduced distance between two nodes"""
    cdef intp_t n_features = tree1.data.shape[1]

    cdef float64_t d1, d2, rdist=0.0
    cdef intp_t j

    if tree1.dist_metric.p == INF:
        for j in range(n_features):
            rdist = fmax(rdist, fabs(tree1.node_bounds[0, i_node1, j]
                                     - tree2.node_bounds[1, i_node2, j]))
            rdist = fmax(rdist, fabs(tree1.node_bounds[1, i_node1, j]
                                     - tree2.node_bounds[0, i_node2, j]))
    else:
        for j in range(n_features):
            d1 = fabs(tree1.node_bounds[0, i_node1, j]
                      - tree2.node_bounds[1, i_node2, j])
            d2 = fabs(tree1.node_bounds[1, i_node1, j]
                      - tree2.node_bounds[0, i_node2, j])
            rdist += pow(fmax(d1, d2), tree1.dist_metric.p)

    return rdist


cdef inline float64_t max_dist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """Compute the maximum distance between two nodes"""
    return tree1.dist_metric._rdist_to_dist(
        max_rdist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
    )

{{endfor}}


class KDTree(KDTree64):
    __doc__ = CLASS_DOC.format(BinaryTree="KDTree")
    pass
Back to Directory File Manager