Viewing File: /home/ubuntu/.local/lib/python3.10/site-packages/transformers/pytorch_utils.py

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, List, Optional, Set, Tuple, Union

import torch
from packaging import version
from torch import nn

from .utils import logging


ALL_LAYERNORM_LAYERS = [nn.LayerNorm]

logger = logging.get_logger(__name__)

parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version)

is_torch_less_than_1_8 = parsed_torch_version_base < version.parse("1.8.0")
is_torch_less_than_1_9 = parsed_torch_version_base < version.parse("1.9.0")
is_torch_greater_or_equal_than_1_10 = parsed_torch_version_base >= version.parse("1.10")
is_torch_less_than_1_11 = parsed_torch_version_base < version.parse("1.11")


def torch_int_div(tensor1, tensor2):
    """
    A function that performs integer division across different versions of PyTorch.
    """
    if is_torch_less_than_1_8:
        return tensor1 // tensor2
    else:
        return torch.div(tensor1, tensor2, rounding_mode="floor")


def softmax_backward_data(parent, grad_output, output, dim, self):
    """
    A function that calls the internal `_softmax_backward_data` PyTorch method and that adjusts the arguments according
    to the torch version detected.
    """

    from torch import _softmax_backward_data

    if is_torch_less_than_1_11:
        return _softmax_backward_data(grad_output, output, parent.dim, self)
    else:
        return _softmax_backward_data(grad_output, output, parent.dim, self.dtype)


def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (`torch.nn.Linear`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.

    Returns:
        `torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


class Conv1D(nn.Module):
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (`int`): The number of output features.
        nx (`int`): The number of input features.
    """

    def __init__(self, nf, nx):
        super().__init__()
        self.nf = nf
        self.weight = nn.Parameter(torch.empty(nx, nf))
        self.bias = nn.Parameter(torch.zeros(nf))
        nn.init.normal_(self.weight, std=0.02)

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(size_out)
        return x


def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
        layer ([`~pytorch_utils.Conv1D`]): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices.

    Returns:
        [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer


def prune_layer(
    layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[nn.Linear, Conv1D]:
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*): The dimension on which to keep the indices.

    Returns:
        `torch.nn.Linear` or [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError(f"Can't prune layer of class {layer.__class__}")


def apply_chunking_to_forward(
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
) -> torch.Tensor:
    """
    This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
    `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.

    If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
    applying `forward_fn` to `input_tensors`.

    Args:
        forward_fn (`Callable[..., torch.Tensor]`):
            The forward function of the model.
        chunk_size (`int`):
            The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (`int`):
            The dimension over which the `input_tensors` should be chunked.
        input_tensors (`Tuple[torch.Tensor]`):
            The input tensors of `forward_fn` which will be chunked

    Returns:
        `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.


    Examples:

    ```python
    # rename the usual forward() fn to forward_chunk()
    def forward_chunk(self, hidden_states):
        hidden_states = self.decoder(hidden_states)
        return hidden_states


    # implement a chunked forward function
    def forward(self, hidden_states):
        return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
    ```"""

    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"

    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )

    if chunk_size > 0:
        tensor_shape = input_tensors[0].shape[chunk_dim]
        for input_tensor in input_tensors:
            if input_tensor.shape[chunk_dim] != tensor_shape:
                raise ValueError(
                    f"All input tenors have to be of the same shape: {tensor_shape}, "
                    f"found shape {input_tensor.shape[chunk_dim]}"
                )

        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)


def find_pruneable_heads_and_indices(
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
    Finds the heads and their indices taking `already_pruned_heads` into account.

    Args:
        heads (`List[int]`): List of the indices of heads to prune.
        n_heads (`int`): The number of heads in the model.
        head_size (`int`): The size of each head.
        already_pruned_heads (`Set[int]`): A set of already pruned heads.

    Returns:
        `Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
    """
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


def meshgrid(
    *tensors: Union[torch.Tensor, List[torch.Tensor]], indexing: Optional[str] = None
) -> Tuple[torch.Tensor, ...]:
    """
    Wrapper around torch.meshgrid to avoid warning messages about the introduced `indexing` argument.

    Reference: https://pytorch.org/docs/1.13/generated/torch.meshgrid.html
    """
    if is_torch_greater_or_equal_than_1_10:
        return torch.meshgrid(*tensors, indexing=indexing)
    else:
        if indexing != "ij":
            raise ValueError('torch.meshgrid only supports `indexing="ij"` for torch<1.10.')
        return torch.meshgrid(*tensors)
Back to Directory File Manager