Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/gradio/components/paramviewer.pyi

from __future__ import annotations

from typing import Literal, TypedDict

from gradio_client.documentation import document

from gradio.components.base import Component
from gradio.events import Events


class Parameter(TypedDict):
    type: str
    description: str
    default: str | None

from gradio.events import Dependency

@document()
class ParamViewer(Component):
    """
    Displays an interactive table of parameters and their descriptions and default values with syntax highlighting. For each parameter,
    the user should provide a type (e.g. a `str`), a human-readable description, and a default value. As this component does not accept user input,
    it is rarely used as an input component.Internally, this component is used to display the parameters of components in the Custom
    Component Gallery (https://www.gradio.app/custom-components/gallery).
    """

    EVENTS = [
        Events.change,
        Events.upload,
    ]

    def __init__(
        self,
        value: dict[str, Parameter] | None = None,
        language: Literal["python", "typescript"] = "python",
        linkify: list[str] | None = None,
        every: float | None = None,
        render: bool = True,
    ):
        """
        Parameters:
            value: A list of dictionaries with keys "type", "description", and "default" for each parameter.
            language: The language to display the code in. One of "python" or "typescript".
            linkify: A list of strings to linkify. If any of these strings is found in the description, it will be rendered as a link.
            every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
        """
        self.value = value or {}
        self.language = language
        self.linkify = linkify
        super().__init__(
            every=every,
            value=value,
            render=render,
        )

    def preprocess(self, payload: dict[str, Parameter]) -> dict[str, Parameter]:
        """
        Parameters:
            payload: A `dict[str, dict]`. The key in the outer dictionary is the parameter name, while the inner dictionary has keys "type", "description", and (optionally) "default" for each parameter.
        Returns:
            (Rarely used) passes value as a `dict[str, dict]`. The key in the outer dictionary is the parameter name, while the inner dictionary has keys "type", "description", and (optionally) "default" for each parameter.
        """
        return payload

    def postprocess(self, value: dict[str, Parameter]) -> dict[str, Parameter]:
        """
        Parameters:
            value: Expects value as a `dict[str, dict]`. The key in the outer dictionary is the parameter name, while the inner dictionary has keys "type", "description", and (optionally) "default" for each parameter.
        Returns:
            The same value.
        """
        return value

    def example_payload(self):
        return {
            "array": {
                "type": "numpy",
                "description": "any valid json",
                "default": "None",
            }
        }

    def example_value(self):
        return {
            "array": {
                "type": "numpy",
                "description": "any valid json",
                "default": "None",
            }
        }

    def api_info(self):
        return {"type": {}, "description": "any valid json"}

    
    def change(self,
        fn: Callable | None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        outputs: Component | Sequence[Component] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: If True, will scroll to output component on completion
            show_progress: If True, will show progress animation while pending
            queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
            trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
        """
        ...
    
    def upload(self,
        fn: Callable | None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        outputs: Component | Sequence[Component] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: If True, will scroll to output component on completion
            show_progress: If True, will show progress animation while pending
            queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
            trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
        """
        ...
Back to Directory File Manager