Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/skimage/graph/tests/test_rag.py
import pytest
from numpy.testing import assert_array_equal
import numpy as np
from skimage import graph
from skimage import segmentation, data
from skimage._shared import testing
from skimage._shared._warnings import expected_warnings
def max_edge(g, src, dst, n):
default = {'weight': -np.inf}
w1 = g[n].get(src, default)['weight']
w2 = g[n].get(dst, default)['weight']
return {'weight': max(w1, w2)}
def test_rag_merge():
g = graph.RAG()
for i in range(5):
g.add_node(i, {'labels': [i]})
g.add_edge(0, 1, {'weight': 10})
g.add_edge(1, 2, {'weight': 20})
g.add_edge(2, 3, {'weight': 30})
g.add_edge(3, 0, {'weight': 40})
g.add_edge(0, 2, {'weight': 50})
g.add_edge(3, 4, {'weight': 60})
gc = g.copy()
# We merge nodes and ensure that the minimum weight is chosen
# when there is a conflict.
g.merge_nodes(0, 2)
assert g.adj[1][2]['weight'] == 10
assert g.adj[2][3]['weight'] == 30
# We specify `max_edge` as `weight_func` as ensure that maximum
# weight is chosen in case on conflict
gc.merge_nodes(0, 2, weight_func=max_edge)
assert gc.adj[1][2]['weight'] == 20
assert gc.adj[2][3]['weight'] == 40
g.merge_nodes(1, 4)
g.merge_nodes(2, 3)
n = g.merge_nodes(3, 4, in_place=False)
assert sorted(g.nodes[n]['labels']) == list(range(5))
assert list(g.edges()) == []
@pytest.mark.parametrize(
"in_place", [True, False],
)
def test_rag_merge_gh5360(in_place):
# Add another test case covering the gallery example plot_rag.py.
# See bug report at gh-5360.
g = graph.RAG()
g.add_edge(1, 2, weight=10)
g.add_edge(2, 3, weight=20)
g.add_edge(3, 4, weight=30)
g.add_edge(4, 1, weight=40)
g.add_edge(1, 3, weight=50)
for n in g.nodes():
g.nodes[n]['labels'] = [n]
gc = g.copy()
# New node ID is chosen if in_place=False
merged_id = 3 if in_place is True else 5
g.merge_nodes(1, 3, in_place=in_place)
assert g.adj[merged_id][2]['weight'] == 10
assert g.adj[merged_id][4]['weight'] == 30
gc.merge_nodes(1, 3, weight_func=max_edge, in_place=in_place)
assert gc.adj[merged_id][2]['weight'] == 20
assert gc.adj[merged_id][4]['weight'] == 40
def test_threshold_cut():
img = np.zeros((100, 100, 3), dtype='uint8')
img[:50, :50] = 255, 255, 255
img[:50, 50:] = 254, 254, 254
img[50:, :50] = 2, 2, 2
img[50:, 50:] = 1, 1, 1
labels = np.zeros((100, 100), dtype='uint8')
labels[:50, :50] = 0
labels[:50, 50:] = 1
labels[50:, :50] = 2
labels[50:, 50:] = 3
rag = graph.rag_mean_color(img, labels)
new_labels = graph.cut_threshold(labels, rag, 10, in_place=False)
# Two labels
assert new_labels.max() == 1
new_labels = graph.cut_threshold(labels, rag, 10)
# Two labels
assert new_labels.max() == 1
def test_cut_normalized():
img = np.zeros((100, 100, 3), dtype='uint8')
img[:50, :50] = 255, 255, 255
img[:50, 50:] = 254, 254, 254
img[50:, :50] = 2, 2, 2
img[50:, 50:] = 1, 1, 1
labels = np.zeros((100, 100), dtype='uint8')
labels[:50, :50] = 0
labels[:50, 50:] = 1
labels[50:, :50] = 2
labels[50:, 50:] = 3
rag = graph.rag_mean_color(img, labels, mode='similarity')
new_labels = graph.cut_normalized(labels, rag, in_place=False)
new_labels, _, _ = segmentation.relabel_sequential(new_labels)
# Two labels
assert new_labels.max() == 1
new_labels = graph.cut_normalized(labels, rag)
new_labels, _, _ = segmentation.relabel_sequential(new_labels)
assert new_labels.max() == 1
def test_rag_error():
img = np.zeros((10, 10, 3), dtype='uint8')
labels = np.zeros((10, 10), dtype='uint8')
labels[:5, :] = 0
labels[5:, :] = 1
with testing.raises(ValueError):
graph.rag_mean_color(img, labels,
2, 'non existent mode')
def _weight_mean_color(graph, src, dst, n):
diff = graph.nodes[dst]['mean color'] - graph.nodes[n]['mean color']
diff = np.linalg.norm(diff)
return {'weight': diff}
def _pre_merge_mean_color(graph, src, dst):
graph.nodes[dst]['total color'] += graph.nodes[src]['total color']
graph.nodes[dst]['pixel count'] += graph.nodes[src]['pixel count']
graph.nodes[dst]['mean color'] = (graph.nodes[dst]['total color'] /
graph.nodes[dst]['pixel count'])
def merge_hierarchical_mean_color(labels, rag, thresh, rag_copy=True,
in_place_merge=False):
return graph.merge_hierarchical(labels, rag, thresh, rag_copy,
in_place_merge, _pre_merge_mean_color,
_weight_mean_color)
def test_rag_hierarchical():
img = np.zeros((8, 8, 3), dtype='uint8')
labels = np.zeros((8, 8), dtype='uint8')
img[:, :, :] = 31
labels[:, :] = 1
img[0:4, 0:4, :] = 10, 10, 10
labels[0:4, 0:4] = 2
img[4:, 0:4, :] = 20, 20, 20
labels[4:, 0:4] = 3
g = graph.rag_mean_color(img, labels)
g2 = g.copy()
thresh = 20 # more than 11*sqrt(3) but less than
result = merge_hierarchical_mean_color(labels, g, thresh)
assert(np.all(result[:, :4] == result[0, 0]))
assert(np.all(result[:, 4:] == result[-1, -1]))
result = merge_hierarchical_mean_color(labels, g2, thresh,
in_place_merge=True)
assert(np.all(result[:, :4] == result[0, 0]))
assert(np.all(result[:, 4:] == result[-1, -1]))
result = graph.cut_threshold(labels, g, thresh)
assert np.all(result == result[0, 0])
def test_ncut_stable_subgraph():
""" Test to catch an error thrown when subgraph has all equal edges. """
img = np.zeros((100, 100, 3), dtype='uint8')
labels = np.zeros((100, 100), dtype='uint8')
labels[:50, :50] = 1
labels[:50, 50:] = 2
rag = graph.rag_mean_color(img, labels, mode='similarity')
new_labels = graph.cut_normalized(labels, rag, in_place=False)
new_labels, _, _ = segmentation.relabel_sequential(new_labels)
assert new_labels.max() == 0
def test_reproducibility():
"""ensure cut_normalized returns the same output for the same input,
when specifying random seed
"""
img = data.coffee()
labels1 = segmentation.slic(
img, compactness=30, n_segments=400, start_label=0)
g = graph.rag_mean_color(img, labels1, mode='similarity')
results = [None] * 4
for i in range(len(results)):
results[i] = graph.cut_normalized(
labels1, g, in_place=False, thresh=1e-3, rng=1234)
with expected_warnings(['`random_state` is a deprecated argument']):
graph.cut_normalized(
labels1, g, in_place=False, thresh=1e-3, random_state=1234)
for i in range(len(results) - 1):
assert_array_equal(results[i], results[i + 1])
def test_generic_rag_2d():
labels = np.array([[1, 2], [3, 4]], dtype=np.uint8)
g = graph.RAG(labels)
assert g.has_edge(1, 2) and g.has_edge(2, 4) and not g.has_edge(1, 4)
h = graph.RAG(labels, connectivity=2)
assert h.has_edge(1, 2) and h.has_edge(1, 4) and h.has_edge(2, 3)
def test_generic_rag_3d():
labels = np.arange(8, dtype=np.uint8).reshape((2, 2, 2))
g = graph.RAG(labels)
assert g.has_edge(0, 1) and g.has_edge(1, 3) and not g.has_edge(0, 3)
h = graph.RAG(labels, connectivity=2)
assert h.has_edge(0, 1) and h.has_edge(0, 3) and not h.has_edge(0, 7)
k = graph.RAG(labels, connectivity=3)
assert k.has_edge(0, 1) and k.has_edge(1, 2) and k.has_edge(2, 5)
def test_rag_boundary():
labels = np.zeros((16, 16), dtype='uint8')
edge_map = np.zeros_like(labels, dtype=float)
edge_map[8, :] = 0.5
edge_map[:, 8] = 1.0
labels[:8, :8] = 1
labels[:8, 8:] = 2
labels[8:, :8] = 3
labels[8:, 8:] = 4
g = graph.rag_boundary(labels, edge_map, connectivity=1)
assert set(g.nodes()) == {1, 2, 3, 4}
assert set(g.edges()) == {(1, 2), (1, 3), (2, 4), (3, 4)}
assert g[1][3]['weight'] == 0.25
assert g[2][4]['weight'] == 0.34375
assert g[1][3]['count'] == 16
Back to Directory
File Manager