Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/skimage/morphology/tests/test_util.py
"""Tests for `_util`."""
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from skimage.morphology import _util
@pytest.mark.parametrize("image_shape", [
(111,), (33, 44), (22, 55, 11), (6, 5, 4, 3)
])
@pytest.mark.parametrize("order", ["C", "F"])
def test_offsets_to_raveled_neighbors_highest_connectivity(image_shape, order):
"""
Check scenarios where footprint is always of the highest connectivity
and all dimensions are > 2.
"""
footprint = np.ones((3,) * len(image_shape), dtype=bool)
center = (1,) * len(image_shape)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, footprint, center, order
)
# Assert only neighbors are present, center was removed
assert len(offsets) == footprint.sum() - 1
assert 0 not in offsets
# Assert uniqueness
assert len(set(offsets)) == offsets.size
# offsets form pairs of with same value but different signs
# if footprint is symmetric around center
assert all(-x in offsets for x in offsets)
# Construct image whose values are the Manhattan distance to its center
image_center = tuple(s // 2 for s in image_shape)
coords = [
np.abs(np.arange(s, dtype=np.intp) - c)
for s, c in zip(image_shape, image_center)
]
grid = np.meshgrid(*coords, indexing="ij")
image = np.sum(grid, axis=0)
image_raveled = image.ravel(order)
image_center_raveled = np.ravel_multi_index(
image_center, image_shape, order=order
)
# Sample raveled image around its center
samples = []
for offset in offsets:
index = image_center_raveled + offset
samples.append(image_raveled[index])
# Assert that center with value 0 wasn't selected
assert np.min(samples) == 1
# Assert that only neighbors where selected
# (highest value == connectivity)
assert np.max(samples) == len(image_shape)
# Assert that nearest neighbors are selected first
assert list(sorted(samples)) == samples
@pytest.mark.parametrize("image_shape", [
(2,), (2, 2), (2, 1, 2), (2, 2, 1, 2), (0, 2, 1, 2)
])
@pytest.mark.parametrize("order", ["C", "F"])
def test_offsets_to_raveled_neighbors_footprint_smaller_image(image_shape,
order):
"""
Test if a dimension indicated by `image_shape` is smaller than in
`footprint`.
"""
footprint = np.ones((3,) * len(image_shape), dtype=bool)
center = (1,) * len(image_shape)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, footprint, center, order
)
# Assert only neighbors are present, center and duplicates (possible
# for this scenario) where removed
assert len(offsets) <= footprint.sum() - 1
assert 0 not in offsets
# Assert uniqueness
assert len(set(offsets)) == offsets.size
# offsets form pairs of with same value but different signs
# if footprint is symmetric around center
assert all(-x in offsets for x in offsets)
def test_offsets_to_raveled_neighbors_explicit_0():
"""Check reviewed example."""
image_shape = (100, 200, 3)
footprint = np.ones((3, 3, 3), dtype=bool)
center = (1, 1, 1)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, footprint, center
)
desired = np.array([
-600, -3, -1, 1, 3, 600, -603, -601, -599, -597, -4,
-2, 2, 4, 597, 599, 601, 603, -604, -602, -598, -596,
596, 598, 602, 604
])
assert_array_equal(offsets, desired)
def test_offsets_to_raveled_neighbors_explicit_1():
"""Check reviewed example where footprint is larger in last dimension."""
image_shape = (10, 9, 8, 3)
footprint = np.ones((3, 3, 3, 4), dtype=bool)
center = (1, 1, 1, 1)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, footprint, center
)
desired = np.array([
-216, -24, -3, -1, 1, 3, 24, 216, -240, -219, -217, -215, -213,
-192, -27, -25, -23, -21, -4, -2, 2, 4, 21, 23, 25, 27,
192, 213, 215, 217, 219, 240, -243, -241, -239, -237, -220, -218, -214,
-212, -195, -193, -191, -189, -28, -26, -22, -20, 20, 22, 26, 28,
189, 191, 193, 195, 212, 214, 218, 220, 237, 239, 241, 243, -244,
-242, -238, -236, -196, -194, -190, -188, 188, 190, 194, 196, 236, 238,
242, 244, 5, -211, -19, 29, 221, -235, -187, 197, 245
])
assert_array_equal(offsets, desired)
Back to Directory
File Manager