Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py
from sympy.categories.diagram_drawing import _GrowableGrid, ArrowStringDescription
from sympy.categories import (DiagramGrid, Object, NamedMorphism,
Diagram, XypicDiagramDrawer, xypic_draw_diagram)
from sympy.sets.sets import FiniteSet
def test_GrowableGrid():
grid = _GrowableGrid(1, 2)
# Check dimensions.
assert grid.width == 1
assert grid.height == 2
# Check initialization of elements.
assert grid[0, 0] is None
assert grid[1, 0] is None
# Check assignment to elements.
grid[0, 0] = 1
grid[1, 0] = "two"
assert grid[0, 0] == 1
assert grid[1, 0] == "two"
# Check appending a row.
grid.append_row()
assert grid.width == 1
assert grid.height == 3
assert grid[0, 0] == 1
assert grid[1, 0] == "two"
assert grid[2, 0] is None
# Check appending a column.
grid.append_column()
assert grid.width == 2
assert grid.height == 3
assert grid[0, 0] == 1
assert grid[1, 0] == "two"
assert grid[2, 0] is None
assert grid[0, 1] is None
assert grid[1, 1] is None
assert grid[2, 1] is None
grid = _GrowableGrid(1, 2)
grid[0, 0] = 1
grid[1, 0] = "two"
# Check prepending a row.
grid.prepend_row()
assert grid.width == 1
assert grid.height == 3
assert grid[0, 0] is None
assert grid[1, 0] == 1
assert grid[2, 0] == "two"
# Check prepending a column.
grid.prepend_column()
assert grid.width == 2
assert grid.height == 3
assert grid[0, 0] is None
assert grid[1, 0] is None
assert grid[2, 0] is None
assert grid[0, 1] is None
assert grid[1, 1] == 1
assert grid[2, 1] == "two"
def test_DiagramGrid():
# Set up some objects and morphisms.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(D, A, "h")
k = NamedMorphism(D, B, "k")
# A one-morphism diagram.
d = Diagram([f])
grid = DiagramGrid(d)
assert grid.width == 2
assert grid.height == 1
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid.morphisms == {f: FiniteSet()}
# A triangle.
d = Diagram([f, g], {g * f: "unique"})
grid = DiagramGrid(d)
assert grid.width == 2
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[1, 0] == C
assert grid[1, 1] is None
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(),
g * f: FiniteSet("unique")}
# A triangle with a "loop" morphism.
l_A = NamedMorphism(A, A, "l_A")
d = Diagram([f, g, l_A])
grid = DiagramGrid(d)
assert grid.width == 2
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), l_A: FiniteSet()}
# A simple diagram.
d = Diagram([f, g, h, k])
grid = DiagramGrid(d)
assert grid.width == 3
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == D
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid[1, 2] is None
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
k: FiniteSet()}
assert str(grid) == '[[Object("A"), Object("B"), Object("D")], ' \
'[None, Object("C"), None]]'
# A chain of morphisms.
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
k = NamedMorphism(D, E, "k")
d = Diagram([f, g, h, k])
grid = DiagramGrid(d)
assert grid.width == 3
assert grid.height == 3
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] is None
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid[1, 2] == D
assert grid[2, 0] is None
assert grid[2, 1] is None
assert grid[2, 2] == E
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
k: FiniteSet()}
# A square.
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, D, "g")
h = NamedMorphism(A, C, "h")
k = NamedMorphism(C, D, "k")
d = Diagram([f, g, h, k])
grid = DiagramGrid(d)
assert grid.width == 2
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[1, 0] == C
assert grid[1, 1] == D
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
k: FiniteSet()}
# A strange diagram which resulted from a typo when creating a
# test for five lemma, but which allowed to stop one extra problem
# in the algorithm.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
A_ = Object("A'")
B_ = Object("B'")
C_ = Object("C'")
D_ = Object("D'")
E_ = Object("E'")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
i = NamedMorphism(D, E, "i")
# These 4 morphisms should be between primed objects.
j = NamedMorphism(A, B, "j")
k = NamedMorphism(B, C, "k")
l = NamedMorphism(C, D, "l")
m = NamedMorphism(D, E, "m")
o = NamedMorphism(A, A_, "o")
p = NamedMorphism(B, B_, "p")
q = NamedMorphism(C, C_, "q")
r = NamedMorphism(D, D_, "r")
s = NamedMorphism(E, E_, "s")
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
grid = DiagramGrid(d)
assert grid.width == 3
assert grid.height == 4
assert grid[0, 0] is None
assert grid[0, 1] == A
assert grid[0, 2] == A_
assert grid[1, 0] == C
assert grid[1, 1] == B
assert grid[1, 2] == B_
assert grid[2, 0] == C_
assert grid[2, 1] == D
assert grid[2, 2] == D_
assert grid[3, 0] is None
assert grid[3, 1] == E
assert grid[3, 2] == E_
morphisms = {}
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
morphisms[m] = FiniteSet()
assert grid.morphisms == morphisms
# A cube.
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
A4 = Object("A4")
A5 = Object("A5")
A6 = Object("A6")
A7 = Object("A7")
A8 = Object("A8")
# The top face of the cube.
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A1, A3, "f2")
f3 = NamedMorphism(A2, A4, "f3")
f4 = NamedMorphism(A3, A4, "f3")
# The bottom face of the cube.
f5 = NamedMorphism(A5, A6, "f5")
f6 = NamedMorphism(A5, A7, "f6")
f7 = NamedMorphism(A6, A8, "f7")
f8 = NamedMorphism(A7, A8, "f8")
# The remaining morphisms.
f9 = NamedMorphism(A1, A5, "f9")
f10 = NamedMorphism(A2, A6, "f10")
f11 = NamedMorphism(A3, A7, "f11")
f12 = NamedMorphism(A4, A8, "f11")
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
grid = DiagramGrid(d)
assert grid.width == 4
assert grid.height == 3
assert grid[0, 0] is None
assert grid[0, 1] == A5
assert grid[0, 2] == A6
assert grid[0, 3] is None
assert grid[1, 0] is None
assert grid[1, 1] == A1
assert grid[1, 2] == A2
assert grid[1, 3] is None
assert grid[2, 0] == A7
assert grid[2, 1] == A3
assert grid[2, 2] == A4
assert grid[2, 3] == A8
morphisms = {}
for m in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]:
morphisms[m] = FiniteSet()
assert grid.morphisms == morphisms
# A line diagram.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
i = NamedMorphism(D, E, "i")
d = Diagram([f, g, h, i])
grid = DiagramGrid(d, layout="sequential")
assert grid.width == 5
assert grid.height == 1
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == C
assert grid[0, 3] == D
assert grid[0, 4] == E
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
i: FiniteSet()}
# Test the transposed version.
grid = DiagramGrid(d, layout="sequential", transpose=True)
assert grid.width == 1
assert grid.height == 5
assert grid[0, 0] == A
assert grid[1, 0] == B
assert grid[2, 0] == C
assert grid[3, 0] == D
assert grid[4, 0] == E
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
i: FiniteSet()}
# A pullback.
m1 = NamedMorphism(A, B, "m1")
m2 = NamedMorphism(A, C, "m2")
s1 = NamedMorphism(B, D, "s1")
s2 = NamedMorphism(C, D, "s2")
f1 = NamedMorphism(E, B, "f1")
f2 = NamedMorphism(E, C, "f2")
g = NamedMorphism(E, A, "g")
d = Diagram([m1, m2, s1, s2, f1, f2], {g: "unique"})
grid = DiagramGrid(d)
assert grid.width == 3
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == E
assert grid[1, 0] == C
assert grid[1, 1] == D
assert grid[1, 2] is None
morphisms = {g: FiniteSet("unique")}
for m in [m1, m2, s1, s2, f1, f2]:
morphisms[m] = FiniteSet()
assert grid.morphisms == morphisms
# Test the pullback with sequential layout, just for stress
# testing.
grid = DiagramGrid(d, layout="sequential")
assert grid.width == 5
assert grid.height == 1
assert grid[0, 0] == D
assert grid[0, 1] == B
assert grid[0, 2] == A
assert grid[0, 3] == C
assert grid[0, 4] == E
assert grid.morphisms == morphisms
# Test a pullback with object grouping.
grid = DiagramGrid(d, groups=FiniteSet(E, FiniteSet(A, B, C, D)))
assert grid.width == 3
assert grid.height == 2
assert grid[0, 0] == E
assert grid[0, 1] == A
assert grid[0, 2] == B
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid[1, 2] == D
assert grid.morphisms == morphisms
# Five lemma, actually.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
A_ = Object("A'")
B_ = Object("B'")
C_ = Object("C'")
D_ = Object("D'")
E_ = Object("E'")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
i = NamedMorphism(D, E, "i")
j = NamedMorphism(A_, B_, "j")
k = NamedMorphism(B_, C_, "k")
l = NamedMorphism(C_, D_, "l")
m = NamedMorphism(D_, E_, "m")
o = NamedMorphism(A, A_, "o")
p = NamedMorphism(B, B_, "p")
q = NamedMorphism(C, C_, "q")
r = NamedMorphism(D, D_, "r")
s = NamedMorphism(E, E_, "s")
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
grid = DiagramGrid(d)
assert grid.width == 5
assert grid.height == 3
assert grid[0, 0] is None
assert grid[0, 1] == A
assert grid[0, 2] == A_
assert grid[0, 3] is None
assert grid[0, 4] is None
assert grid[1, 0] == C
assert grid[1, 1] == B
assert grid[1, 2] == B_
assert grid[1, 3] == C_
assert grid[1, 4] is None
assert grid[2, 0] == D
assert grid[2, 1] == E
assert grid[2, 2] is None
assert grid[2, 3] == D_
assert grid[2, 4] == E_
morphisms = {}
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
morphisms[m] = FiniteSet()
assert grid.morphisms == morphisms
# Test the five lemma with object grouping.
grid = DiagramGrid(d, FiniteSet(
FiniteSet(A, B, C, D, E), FiniteSet(A_, B_, C_, D_, E_)))
assert grid.width == 6
assert grid.height == 3
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] is None
assert grid[0, 3] == A_
assert grid[0, 4] == B_
assert grid[0, 5] is None
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid[1, 2] == D
assert grid[1, 3] is None
assert grid[1, 4] == C_
assert grid[1, 5] == D_
assert grid[2, 0] is None
assert grid[2, 1] is None
assert grid[2, 2] == E
assert grid[2, 3] is None
assert grid[2, 4] is None
assert grid[2, 5] == E_
assert grid.morphisms == morphisms
# Test the five lemma with object grouping, but mixing containers
# to represent groups.
grid = DiagramGrid(d, [(A, B, C, D, E), {A_, B_, C_, D_, E_}])
assert grid.width == 6
assert grid.height == 3
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] is None
assert grid[0, 3] == A_
assert grid[0, 4] == B_
assert grid[0, 5] is None
assert grid[1, 0] is None
assert grid[1, 1] == C
assert grid[1, 2] == D
assert grid[1, 3] is None
assert grid[1, 4] == C_
assert grid[1, 5] == D_
assert grid[2, 0] is None
assert grid[2, 1] is None
assert grid[2, 2] == E
assert grid[2, 3] is None
assert grid[2, 4] is None
assert grid[2, 5] == E_
assert grid.morphisms == morphisms
# Test the five lemma with object grouping and hints.
grid = DiagramGrid(d, {
FiniteSet(A, B, C, D, E): {"layout": "sequential",
"transpose": True},
FiniteSet(A_, B_, C_, D_, E_): {"layout": "sequential",
"transpose": True}},
transpose=True)
assert grid.width == 5
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == C
assert grid[0, 3] == D
assert grid[0, 4] == E
assert grid[1, 0] == A_
assert grid[1, 1] == B_
assert grid[1, 2] == C_
assert grid[1, 3] == D_
assert grid[1, 4] == E_
assert grid.morphisms == morphisms
# A two-triangle disconnected diagram.
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
f_ = NamedMorphism(A_, B_, "f")
g_ = NamedMorphism(B_, C_, "g")
d = Diagram([f, g, f_, g_], {g * f: "unique", g_ * f_: "unique"})
grid = DiagramGrid(d)
assert grid.width == 4
assert grid.height == 2
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == A_
assert grid[0, 3] == B_
assert grid[1, 0] == C
assert grid[1, 1] is None
assert grid[1, 2] == C_
assert grid[1, 3] is None
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), f_: FiniteSet(),
g_: FiniteSet(), g * f: FiniteSet("unique"),
g_ * f_: FiniteSet("unique")}
# A two-morphism disconnected diagram.
f = NamedMorphism(A, B, "f")
g = NamedMorphism(C, D, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert grid.width == 4
assert grid.height == 1
assert grid[0, 0] == A
assert grid[0, 1] == B
assert grid[0, 2] == C
assert grid[0, 3] == D
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet()}
# Test a one-object diagram.
f = NamedMorphism(A, A, "f")
d = Diagram([f])
grid = DiagramGrid(d)
assert grid.width == 1
assert grid.height == 1
assert grid[0, 0] == A
# Test a two-object disconnected diagram.
g = NamedMorphism(B, B, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert grid.width == 2
assert grid.height == 1
assert grid[0, 0] == A
assert grid[0, 1] == B
def test_DiagramGrid_pseudopod():
# Test a diagram in which even growing a pseudopod does not
# eventually help.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
F = Object("F")
A_ = Object("A'")
B_ = Object("B'")
C_ = Object("C'")
D_ = Object("D'")
E_ = Object("E'")
f1 = NamedMorphism(A, B, "f1")
f2 = NamedMorphism(A, C, "f2")
f3 = NamedMorphism(A, D, "f3")
f4 = NamedMorphism(A, E, "f4")
f5 = NamedMorphism(A, A_, "f5")
f6 = NamedMorphism(A, B_, "f6")
f7 = NamedMorphism(A, C_, "f7")
f8 = NamedMorphism(A, D_, "f8")
f9 = NamedMorphism(A, E_, "f9")
f10 = NamedMorphism(A, F, "f10")
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10])
grid = DiagramGrid(d)
assert grid.width == 5
assert grid.height == 3
assert grid[0, 0] == E
assert grid[0, 1] == C
assert grid[0, 2] == C_
assert grid[0, 3] == E_
assert grid[0, 4] == F
assert grid[1, 0] == D
assert grid[1, 1] == A
assert grid[1, 2] == A_
assert grid[1, 3] is None
assert grid[1, 4] is None
assert grid[2, 0] == D_
assert grid[2, 1] == B
assert grid[2, 2] == B_
assert grid[2, 3] is None
assert grid[2, 4] is None
morphisms = {}
for f in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]:
morphisms[f] = FiniteSet()
assert grid.morphisms == morphisms
def test_ArrowStringDescription():
astr = ArrowStringDescription("cm", "", None, "", "", "d", "r", "_", "f")
assert str(astr) == "\\ar[dr]_{f}"
astr = ArrowStringDescription("cm", "", 12, "", "", "d", "r", "_", "f")
assert str(astr) == "\\ar[dr]_{f}"
astr = ArrowStringDescription("cm", "^", 12, "", "", "d", "r", "_", "f")
assert str(astr) == "\\ar@/^12cm/[dr]_{f}"
astr = ArrowStringDescription("cm", "", 12, "r", "", "d", "r", "_", "f")
assert str(astr) == "\\ar[dr]_{f}"
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
astr.arrow_style = "{-->}"
assert str(astr) == "\\ar@(r,u)@{-->}[dr]_{f}"
astr = ArrowStringDescription("cm", "_", 12, "", "", "d", "r", "_", "f")
astr.arrow_style = "{-->}"
assert str(astr) == "\\ar@/_12cm/@{-->}[dr]_{f}"
def test_XypicDiagramDrawer_line():
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
i = NamedMorphism(D, E, "i")
d = Diagram([f, g, h, i])
grid = DiagramGrid(d, layout="sequential")
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]^{f} & B \\ar[r]^{g} & C \\ar[r]^{h} & D \\ar[r]^{i} & E \n" \
"}\n"
# The same diagram, transposed.
grid = DiagramGrid(d, layout="sequential", transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]^{f} \\\\\n" \
"B \\ar[d]^{g} \\\\\n" \
"C \\ar[d]^{h} \\\\\n" \
"D \\ar[d]^{i} \\\\\n" \
"E \n" \
"}\n"
def test_XypicDiagramDrawer_triangle():
# A triangle diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g], {g * f: "unique"})
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]_{g\\circ f} \\ar[r]^{f} & B \\ar[ld]^{g} \\\\\n" \
"C & \n" \
"}\n"
# The same diagram, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
"B \\ar[ru]_{g} & \n" \
"}\n"
# The same diagram, with a masked morphism.
assert drawer.draw(d, grid, masked=[g]) == "\\xymatrix{\n" \
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
"B & \n" \
"}\n"
# The same diagram with a formatter for "unique".
def formatter(astr):
astr.label = "\\exists !" + astr.label
astr.arrow_style = "{-->}"
drawer.arrow_formatters["unique"] = formatter
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar@{-->}[r]^{\\exists !g\\circ f} \\ar[d]_{f} & C \\\\\n" \
"B \\ar[ru]_{g} & \n" \
"}\n"
# The same diagram with a default formatter.
def default_formatter(astr):
astr.label_displacement = "(0.45)"
drawer.default_arrow_formatter = default_formatter
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar@{-->}[r]^(0.45){\\exists !g\\circ f} \\ar[d]_(0.45){f} & C \\\\\n" \
"B \\ar[ru]_(0.45){g} & \n" \
"}\n"
# A triangle diagram with a lot of morphisms between the same
# objects.
f1 = NamedMorphism(B, A, "f1")
f2 = NamedMorphism(A, B, "f2")
g1 = NamedMorphism(C, B, "g1")
g2 = NamedMorphism(B, C, "g2")
d = Diagram([f, f1, f2, g, g1, g2], {f1 * g1: "unique", g2 * f2: "unique"})
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid, masked=[f1*g1*g2*f2, g2*f2*f1*g1]) == \
"\\xymatrix{\n" \
"A \\ar[r]^{g_{2}\\circ f_{2}} \\ar[d]_{f} \\ar@/^3mm/[d]^{f_{2}} " \
"& C \\ar@/^3mm/[l]^{f_{1}\\circ g_{1}} \\ar@/^3mm/[ld]^{g_{1}} \\\\\n" \
"B \\ar@/^3mm/[u]^{f_{1}} \\ar[ru]_{g} \\ar@/^3mm/[ru]^{g_{2}} & \n" \
"}\n"
def test_XypicDiagramDrawer_cube():
# A cube diagram.
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
A4 = Object("A4")
A5 = Object("A5")
A6 = Object("A6")
A7 = Object("A7")
A8 = Object("A8")
# The top face of the cube.
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A1, A3, "f2")
f3 = NamedMorphism(A2, A4, "f3")
f4 = NamedMorphism(A3, A4, "f3")
# The bottom face of the cube.
f5 = NamedMorphism(A5, A6, "f5")
f6 = NamedMorphism(A5, A7, "f6")
f7 = NamedMorphism(A6, A8, "f7")
f8 = NamedMorphism(A7, A8, "f8")
# The remaining morphisms.
f9 = NamedMorphism(A1, A5, "f9")
f10 = NamedMorphism(A2, A6, "f10")
f11 = NamedMorphism(A3, A7, "f11")
f12 = NamedMorphism(A4, A8, "f11")
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"& A_{5} \\ar[r]^{f_{5}} \\ar[ldd]_{f_{6}} & A_{6} \\ar[rdd]^{f_{7}} " \
"& \\\\\n" \
"& A_{1} \\ar[r]^{f_{1}} \\ar[d]^{f_{2}} \\ar[u]^{f_{9}} & A_{2} " \
"\\ar[d]^{f_{3}} \\ar[u]_{f_{10}} & \\\\\n" \
"A_{7} \\ar@/_3mm/[rrr]_{f_{8}} & A_{3} \\ar[r]^{f_{3}} \\ar[l]_{f_{11}} " \
"& A_{4} \\ar[r]^{f_{11}} & A_{8} \n" \
"}\n"
# The same diagram, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"& & A_{7} \\ar@/^3mm/[ddd]^{f_{8}} \\\\\n" \
"A_{5} \\ar[d]_{f_{5}} \\ar[rru]^{f_{6}} & A_{1} \\ar[d]^{f_{1}} " \
"\\ar[r]^{f_{2}} \\ar[l]^{f_{9}} & A_{3} \\ar[d]_{f_{3}} " \
"\\ar[u]^{f_{11}} \\\\\n" \
"A_{6} \\ar[rrd]_{f_{7}} & A_{2} \\ar[r]^{f_{3}} \\ar[l]^{f_{10}} " \
"& A_{4} \\ar[d]_{f_{11}} \\\\\n" \
"& & A_{8} \n" \
"}\n"
def test_XypicDiagramDrawer_curved_and_loops():
# A simple diagram, with a curved arrow.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(D, A, "h")
k = NamedMorphism(D, B, "k")
d = Diagram([f, g, h, k])
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]_{f} & B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_3mm/[ll]_{h} \\\\\n" \
"& C & \n" \
"}\n"
# The same diagram, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]^{f} & \\\\\n" \
"B \\ar[r]^{g} & C \\\\\n" \
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
"}\n"
# The same diagram, larger and rotated.
assert drawer.draw(d, grid, diagram_format="@+1cm@dr") == \
"\\xymatrix@+1cm@dr{\n" \
"A \\ar[d]^{f} & \\\\\n" \
"B \\ar[r]^{g} & C \\\\\n" \
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
"}\n"
# A simple diagram with three curved arrows.
h1 = NamedMorphism(D, A, "h1")
h2 = NamedMorphism(A, D, "h2")
k = NamedMorphism(D, B, "k")
d = Diagram([f, g, h, k, h1, h2])
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\\\\n" \
"& C & \n" \
"}\n"
# The same diagram, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} & \\\\\n" \
"B \\ar[r]^{g} & C \\\\\n" \
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} & \n" \
"}\n"
# The same diagram, with "loop" morphisms.
l_A = NamedMorphism(A, A, "l_A")
l_D = NamedMorphism(D, D, "l_D")
l_C = NamedMorphism(C, C, "l_C")
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C])
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
"& B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_7mm/[ll]_{h} " \
"\\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} \\\\\n" \
"& C \\ar@(l,d)[]^{l_{C}} & \n" \
"}\n"
# The same diagram with "loop" morphisms, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} & \\\\\n" \
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\\\\n" \
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
"\\ar@(l,d)[]^{l_{D}} & \n" \
"}\n"
# The same diagram with two "loop" morphisms per object.
l_A_ = NamedMorphism(A, A, "n_A")
l_D_ = NamedMorphism(D, D, "n_D")
l_C_ = NamedMorphism(C, C, "n_C")
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C, l_A_, l_D_, l_C_])
grid = DiagramGrid(d)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
"\\ar@/^3mm/@(l,d)[]^{n_{A}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} " \
"\\ar@/^3mm/@(d,r)[]^{n_{D}} \\\\\n" \
"& C \\ar@(l,d)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} & \n" \
"}\n"
# The same diagram with two "loop" morphisms per object, transposed.
grid = DiagramGrid(d, transpose=True)
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} " \
"\\ar@/^3mm/@(u,l)[]^{n_{A}} & \\\\\n" \
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} \\\\\n" \
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
"\\ar@(l,d)[]^{l_{D}} \\ar@/^3mm/@(d,r)[]^{n_{D}} & \n" \
"}\n"
def test_xypic_draw_diagram():
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
D = Object("D")
E = Object("E")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(C, D, "h")
i = NamedMorphism(D, E, "i")
d = Diagram([f, g, h, i])
grid = DiagramGrid(d, layout="sequential")
drawer = XypicDiagramDrawer()
assert drawer.draw(d, grid) == xypic_draw_diagram(d, layout="sequential")
Back to Directory
File Manager