Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/sympy/core/tests/test_expand.py
from sympy.core.expr import unchanged
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational as R, pi)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.series.order import O
from sympy.simplify.radsimp import expand_numer
from sympy.core.function import expand, expand_multinomial, expand_power_base
from sympy.testing.pytest import raises
from sympy.core.random import verify_numerically
from sympy.abc import x, y, z
def test_expand_no_log():
assert (
(1 + log(x**4))**2).expand(log=False) == 1 + 2*log(x**4) + log(x**4)**2
assert ((1 + log(x**4))*(1 + log(x**3))).expand(
log=False) == 1 + log(x**4) + log(x**3) + log(x**4)*log(x**3)
def test_expand_no_multinomial():
assert ((1 + x)*(1 + (1 + x)**4)).expand(multinomial=False) == \
1 + x + (1 + x)**4 + x*(1 + x)**4
def test_expand_negative_integer_powers():
expr = (x + y)**(-2)
assert expr.expand() == 1 / (2*x*y + x**2 + y**2)
assert expr.expand(multinomial=False) == (x + y)**(-2)
expr = (x + y)**(-3)
assert expr.expand() == 1 / (3*x*x*y + 3*x*y*y + x**3 + y**3)
assert expr.expand(multinomial=False) == (x + y)**(-3)
expr = (x + y)**(2) * (x + y)**(-4)
assert expr.expand() == 1 / (2*x*y + x**2 + y**2)
assert expr.expand(multinomial=False) == (x + y)**(-2)
def test_expand_non_commutative():
A = Symbol('A', commutative=False)
B = Symbol('B', commutative=False)
C = Symbol('C', commutative=False)
a = Symbol('a')
b = Symbol('b')
i = Symbol('i', integer=True)
n = Symbol('n', negative=True)
m = Symbol('m', negative=True)
p = Symbol('p', polar=True)
np = Symbol('p', polar=False)
assert (C*(A + B)).expand() == C*A + C*B
assert (C*(A + B)).expand() != A*C + B*C
assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2
assert ((A + B)**3).expand() == (A**2*B + B**2*A + A*B**2 + B*A**2 +
A**3 + B**3 + A*B*A + B*A*B)
# issue 6219
assert ((a*A*B*A**-1)**2).expand() == a**2*A*B**2/A
# Note that (a*A*B*A**-1)**2 is automatically converted to a**2*(A*B*A**-1)**2
assert ((a*A*B*A**-1)**2).expand(deep=False) == a**2*(A*B*A**-1)**2
assert ((a*A*B*A**-1)**2).expand() == a**2*(A*B**2*A**-1)
assert ((a*A*B*A**-1)**2).expand(force=True) == a**2*A*B**2*A**(-1)
assert ((a*A*B)**2).expand() == a**2*A*B*A*B
assert ((a*A)**2).expand() == a**2*A**2
assert ((a*A*B)**i).expand() == a**i*(A*B)**i
assert ((a*A*(B*(A*B/A)**2))**i).expand() == a**i*(A*B*A*B**2/A)**i
# issue 6558
assert (A*B*(A*B)**-1).expand() == 1
assert ((a*A)**i).expand() == a**i*A**i
assert ((a*A*B*A**-1)**3).expand() == a**3*A*B**3/A
assert ((a*A*B*A*B/A)**3).expand() == \
a**3*A*B*(A*B**2)*(A*B**2)*A*B*A**(-1)
assert ((a*A*B*A*B/A)**-2).expand() == \
A*B**-1*A**-1*B**-2*A**-1*B**-1*A**-1/a**2
assert ((a*b*A*B*A**-1)**i).expand() == a**i*b**i*(A*B/A)**i
assert ((a*(a*b)**i)**i).expand() == a**i*a**(i**2)*b**(i**2)
e = Pow(Mul(a, 1/a, A, B, evaluate=False), S(2), evaluate=False)
assert e.expand() == A*B*A*B
assert sqrt(a*(A*b)**i).expand() == sqrt(a*b**i*A**i)
assert (sqrt(-a)**a).expand() == sqrt(-a)**a
assert expand((-2*n)**(i/3)) == 2**(i/3)*(-n)**(i/3)
assert expand((-2*n*m)**(i/a)) == (-2)**(i/a)*(-n)**(i/a)*(-m)**(i/a)
assert expand((-2*a*p)**b) == 2**b*p**b*(-a)**b
assert expand((-2*a*np)**b) == 2**b*(-a*np)**b
assert expand(sqrt(A*B)) == sqrt(A*B)
assert expand(sqrt(-2*a*b)) == sqrt(2)*sqrt(-a*b)
def test_expand_radicals():
a = (x + y)**R(1, 2)
assert (a**1).expand() == a
assert (a**3).expand() == x*a + y*a
assert (a**5).expand() == x**2*a + 2*x*y*a + y**2*a
assert (1/a**1).expand() == 1/a
assert (1/a**3).expand() == 1/(x*a + y*a)
assert (1/a**5).expand() == 1/(x**2*a + 2*x*y*a + y**2*a)
a = (x + y)**R(1, 3)
assert (a**1).expand() == a
assert (a**2).expand() == a**2
assert (a**4).expand() == x*a + y*a
assert (a**5).expand() == x*a**2 + y*a**2
assert (a**7).expand() == x**2*a + 2*x*y*a + y**2*a
def test_expand_modulus():
assert ((x + y)**11).expand(modulus=11) == x**11 + y**11
assert ((x + sqrt(2)*y)**11).expand(modulus=11) == x**11 + 10*sqrt(2)*y**11
assert (x + y/2).expand(modulus=1) == y/2
raises(ValueError, lambda: ((x + y)**11).expand(modulus=0))
raises(ValueError, lambda: ((x + y)**11).expand(modulus=x))
def test_issue_5743():
assert (x*sqrt(
x + y)*(1 + sqrt(x + y))).expand() == x**2 + x*y + x*sqrt(x + y)
assert (x*sqrt(
x + y)*(1 + x*sqrt(x + y))).expand() == x**3 + x**2*y + x*sqrt(x + y)
def test_expand_frac():
assert expand((x + y)*y/x/(x + 1), frac=True) == \
(x*y + y**2)/(x**2 + x)
assert expand((x + y)*y/x/(x + 1), numer=True) == \
(x*y + y**2)/(x*(x + 1))
assert expand((x + y)*y/x/(x + 1), denom=True) == \
y*(x + y)/(x**2 + x)
eq = (x + 1)**2/y
assert expand_numer(eq, multinomial=False) == eq
def test_issue_6121():
eq = -I*exp(-3*I*pi/4)/(4*pi**(S(3)/2)*sqrt(x))
assert eq.expand(complex=True) # does not give oo recursion
eq = -I*exp(-3*I*pi/4)/(4*pi**(R(3, 2))*sqrt(x))
assert eq.expand(complex=True) # does not give oo recursion
def test_expand_power_base():
assert expand_power_base((x*y*z)**4) == x**4*y**4*z**4
assert expand_power_base((x*y*z)**x).is_Pow
assert expand_power_base((x*y*z)**x, force=True) == x**x*y**x*z**x
assert expand_power_base((x*(y*z)**2)**3) == x**3*y**6*z**6
assert expand_power_base((sin((x*y)**2)*y)**z).is_Pow
assert expand_power_base(
(sin((x*y)**2)*y)**z, force=True) == sin((x*y)**2)**z*y**z
assert expand_power_base(
(sin((x*y)**2)*y)**z, deep=True) == (sin(x**2*y**2)*y)**z
assert expand_power_base(exp(x)**2) == exp(2*x)
assert expand_power_base((exp(x)*exp(y))**2) == exp(2*x)*exp(2*y)
assert expand_power_base(
(exp((x*y)**z)*exp(y))**2) == exp(2*(x*y)**z)*exp(2*y)
assert expand_power_base((exp((x*y)**z)*exp(
y))**2, deep=True, force=True) == exp(2*x**z*y**z)*exp(2*y)
assert expand_power_base((exp(x)*exp(y))**z).is_Pow
assert expand_power_base(
(exp(x)*exp(y))**z, force=True) == exp(x)**z*exp(y)**z
def test_expand_arit():
a = Symbol("a")
b = Symbol("b", positive=True)
c = Symbol("c")
p = R(5)
e = (a + b)*c
assert e == c*(a + b)
assert (e.expand() - a*c - b*c) == R(0)
e = (a + b)*(a + b)
assert e == (a + b)**2
assert e.expand() == 2*a*b + a**2 + b**2
e = (a + b)*(a + b)**R(2)
assert e == (a + b)**3
assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
e = (a + b)*(a + c)*(b + c)
assert e == (a + c)*(a + b)*(b + c)
assert e.expand() == 2*a*b*c + b*a**2 + c*a**2 + b*c**2 + a*c**2 + c*b**2 + a*b**2
e = (a + R(1))**p
assert e == (1 + a)**5
assert e.expand() == 1 + 5*a + 10*a**2 + 10*a**3 + 5*a**4 + a**5
e = (a + b + c)*(a + c + p)
assert e == (5 + a + c)*(a + b + c)
assert e.expand() == 5*a + 5*b + 5*c + 2*a*c + b*c + a*b + a**2 + c**2
x = Symbol("x")
s = exp(x*x) - 1
e = s.nseries(x, 0, 6)/x**2
assert e.expand() == 1 + x**2/2 + O(x**4)
e = (x*(y + z))**(x*(y + z))*(x + y)
assert e.expand(power_exp=False, power_base=False) == x*(x*y + x*
z)**(x*y + x*z) + y*(x*y + x*z)**(x*y + x*z)
assert e.expand(power_exp=False, power_base=False, deep=False) == x* \
(x*(y + z))**(x*(y + z)) + y*(x*(y + z))**(x*(y + z))
e = x * (x + (y + 1)**2)
assert e.expand(deep=False) == x**2 + x*(y + 1)**2
e = (x*(y + z))**z
assert e.expand(power_base=True, mul=True, deep=True) in [x**z*(y +
z)**z, (x*y + x*z)**z]
assert ((2*y)**z).expand() == 2**z*y**z
p = Symbol('p', positive=True)
assert sqrt(-x).expand().is_Pow
assert sqrt(-x).expand(force=True) == I*sqrt(x)
assert ((2*y*p)**z).expand() == 2**z*p**z*y**z
assert ((2*y*p*x)**z).expand() == 2**z*p**z*(x*y)**z
assert ((2*y*p*x)**z).expand(force=True) == 2**z*p**z*x**z*y**z
assert ((2*y*p*-pi)**z).expand() == 2**z*pi**z*p**z*(-y)**z
assert ((2*y*p*-pi*x)**z).expand() == 2**z*pi**z*p**z*(-x*y)**z
n = Symbol('n', negative=True)
m = Symbol('m', negative=True)
assert ((-2*x*y*n)**z).expand() == 2**z*(-n)**z*(x*y)**z
assert ((-2*x*y*n*m)**z).expand() == 2**z*(-m)**z*(-n)**z*(-x*y)**z
# issue 5482
assert sqrt(-2*x*n) == sqrt(2)*sqrt(-n)*sqrt(x)
# issue 5605 (2)
assert (cos(x + y)**2).expand(trig=True) in [
(-sin(x)*sin(y) + cos(x)*cos(y))**2,
sin(x)**2*sin(y)**2 - 2*sin(x)*sin(y)*cos(x)*cos(y) + cos(x)**2*cos(y)**2
]
# Check that this isn't too slow
x = Symbol('x')
W = 1
for i in range(1, 21):
W = W * (x - i)
W = W.expand()
assert W.has(-1672280820*x**15)
def test_expand_mul():
# part of issue 20597
e = Mul(2, 3, evaluate=False)
assert e.expand() == 6
e = Mul(2, 3, 1/x, evaluate = False)
assert e.expand() == 6/x
e = Mul(2, R(1, 3), evaluate=False)
assert e.expand() == R(2, 3)
def test_power_expand():
"""Test for Pow.expand()"""
a = Symbol('a')
b = Symbol('b')
p = (a + b)**2
assert p.expand() == a**2 + b**2 + 2*a*b
p = (1 + 2*(1 + a))**2
assert p.expand() == 9 + 4*(a**2) + 12*a
p = 2**(a + b)
assert p.expand() == 2**a*2**b
A = Symbol('A', commutative=False)
B = Symbol('B', commutative=False)
assert (2**(A + B)).expand() == 2**(A + B)
assert (A**(a + b)).expand() != A**(a + b)
def test_issues_5919_6830():
# issue 5919
n = -1 + 1/x
z = n/x/(-n)**2 - 1/n/x
assert expand(z) == 1/(x**2 - 2*x + 1) - 1/(x - 2 + 1/x) - 1/(-x + 1)
# issue 6830
p = (1 + x)**2
assert expand_multinomial((1 + x*p)**2) == (
x**2*(x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 2*x*(x**2 + 2*x + 1) + 1)
assert expand_multinomial((1 + (y + x)*p)**2) == (
2*((x + y)*(x**2 + 2*x + 1)) + (x**2 + 2*x*y + y**2)*
(x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 1)
A = Symbol('A', commutative=False)
p = (1 + A)**2
assert expand_multinomial((1 + x*p)**2) == (
x**2*(1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 2*x*(1 + 2*A + A**2) + 1)
assert expand_multinomial((1 + (y + x)*p)**2) == (
(x + y)*(1 + 2*A + A**2)*2 + (x**2 + 2*x*y + y**2)*
(1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 1)
assert expand_multinomial((1 + (y + x)*p)**3) == (
(x + y)*(1 + 2*A + A**2)*3 + (x**2 + 2*x*y + y**2)*(1 + 4*A +
6*A**2 + 4*A**3 + A**4)*3 + (x**3 + 3*x**2*y + 3*x*y**2 + y**3)*(1 + 6*A
+ 15*A**2 + 20*A**3 + 15*A**4 + 6*A**5 + A**6) + 1)
# unevaluate powers
eq = (Pow((x + 1)*((A + 1)**2), 2, evaluate=False))
# - in this case the base is not an Add so no further
# expansion is done
assert expand_multinomial(eq) == \
(x**2 + 2*x + 1)*(1 + 4*A + 6*A**2 + 4*A**3 + A**4)
# - but here, the expanded base *is* an Add so it gets expanded
eq = (Pow(((A + 1)**2), 2, evaluate=False))
assert expand_multinomial(eq) == 1 + 4*A + 6*A**2 + 4*A**3 + A**4
# coverage
def ok(a, b, n):
e = (a + I*b)**n
return verify_numerically(e, expand_multinomial(e))
for a in [2, S.Half]:
for b in [3, R(1, 3)]:
for n in range(2, 6):
assert ok(a, b, n)
assert expand_multinomial((x + 1 + O(z))**2) == \
1 + 2*x + x**2 + O(z)
assert expand_multinomial((x + 1 + O(z))**3) == \
1 + 3*x + 3*x**2 + x**3 + O(z)
assert expand_multinomial(3**(x + y + 3)) == 27*3**(x + y)
def test_expand_log():
t = Symbol('t', positive=True)
# after first expansion, -2*log(2) + log(4); then 0 after second
assert expand(log(t**2) - log(t**2/4) - 2*log(2)) == 0
def test_issue_23952():
assert (x**(y + z)).expand(force=True) == x**y*x**z
one = Symbol('1', integer=True, prime=True, odd=True, positive=True)
two = Symbol('2', integer=True, prime=True, even=True)
e = two - one
for b in (0, x):
# 0**e = 0, 0**-e = zoo; but if expanded then nan
assert unchanged(Pow, b, e) # power_exp
assert unchanged(Pow, b, -e) # power_exp
assert unchanged(Pow, b, y - x) # power_exp
assert unchanged(Pow, b, 3 - x) # multinomial
assert (b**e).expand().is_Pow # power_exp
assert (b**-e).expand().is_Pow # power_exp
assert (b**(y - x)).expand().is_Pow # power_exp
assert (b**(3 - x)).expand().is_Pow # multinomial
nn1 = Symbol('nn1', nonnegative=True)
nn2 = Symbol('nn2', nonnegative=True)
nn3 = Symbol('nn3', nonnegative=True)
assert (x**(nn1 + nn2)).expand() == x**nn1*x**nn2
assert (x**(-nn1 - nn2)).expand() == x**-nn1*x**-nn2
assert unchanged(Pow, x, nn1 + nn2 - nn3)
assert unchanged(Pow, x, 1 + nn2 - nn3)
assert unchanged(Pow, x, nn1 - nn2)
assert unchanged(Pow, x, 1 - nn2)
assert unchanged(Pow, x, -1 + nn2)
Back to Directory
File Manager