Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/torch/_C/__init__.pyi

# @generated from torch/_C/__init__.pyi.in
# mypy: disable-error-code="type-arg"

import builtins
from enum import Enum, IntEnum
from pathlib import Path
from typing import (
    Any,
    AnyStr,
    BinaryIO,
    Callable,
    ContextManager,
    Dict,
    Generic,
    Iterable,
    Iterator,
    List,
    Literal,
    NamedTuple,
    Optional,
    Protocol,
    Sequence,
    Set,
    SupportsIndex,
    Tuple,
    Type,
    TypeVar,
    Union,
    overload,
    runtime_checkable,
)
from typing_extensions import ParamSpec

import torch
from torch import inf, SymInt, Tensor
from torch.autograd.graph import Node as _Node
from torch.package import PackageExporter
from torch.storage import UntypedStorage, TypedStorage
from torch.types import (
    _bool,
    _complex,
    _device,
    _dispatchkey,
    _dtype,
    _float,
    _int,
    _layout,
    _qscheme,
    _size,
    Device,
    Number,
    Storage,
)

from torch._prims_common import DeviceLikeType

# This module is defined in torch/csrc/Module.cpp

from . import _functorch, _lazy, _lazy_ts_backend, _nn, _onnx, _VariableFunctions, _cpu

K = TypeVar("K")
T = TypeVar("T")
S = TypeVar("S", bound="torch.Tensor")
P = ParamSpec("P")
ReturnVal = TypeVar("ReturnVal", covariant=True)  # return value (always covariant)
_T_co = TypeVar("_T_co", covariant=True)


@runtime_checkable
class _NestedSequence(Protocol[_T_co]):
    """A protocol for representing nested sequences.

    References::
        `numpy._typing._NestedSequence`
        <https://github.com/numpy/numpy/blob/main/numpy/_typing/_nested_sequence.py>
    """

    def __len__(self, /) -> builtins.int: ...
    def __getitem__(self, index: builtins.int, /) -> _T_co | _NestedSequence[_T_co]: ...
    def __contains__(self, x: builtins.object, /) -> builtins.bool: ...
    def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
    def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
    def count(self, value: Any, /) -> builtins.int: ...
    def index(self, value: Any, /) -> builtins.int: ...


# Defined in torch/csrc/Device.cpp
class device:
    type: str  # THPDevice_type
    index: _int  # THPDevice_index

    def __get__(self, instance, owner=None) -> device: ...

    # THPDevice_pynew
    @overload
    def __init__(self, device: DeviceLikeType) -> None: ...
    @overload
    def __init__(self, type: str, index: _int) -> None: ...

    # Uncomment if we ever make torch.device a decorator
    # def __call__(self, func: T) -> T: ...

    def __enter__(self) -> device: ...
    def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
    def __reduce__(self) -> Tuple[Any, ...]: ...  # THPDevice_reduce

# Defined in torch/csrc/Stream.cpp
class Stream:
    stream_id: _int  # Stream id
    device_index: _int
    device_type: _int

    device: device  # The device of the stream

# Defined in torch/csrc/Size.cpp
class Size(Tuple[_int, ...]):
    # TODO: __reduce__

    @overload  # type: ignore[override]
    def __getitem__(self: Size, key: _int) -> _int: ...
    @overload
    def __getitem__(self: Size, key: slice) -> Size: ...
    def numel(self: Size) -> _int: ...

# Defined in torch/csrc/Dtype.cpp
class dtype:
    # TODO: __reduce__
    is_floating_point: _bool
    is_complex: _bool
    is_signed: _bool
    itemsize: _int
    def to_real(self) -> dtype: ...
    def to_complex(self) -> dtype: ...

# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
    bits: _int
    min: _int
    max: _int
    dtype: str

    def __init__(self, dtype: _dtype) -> None: ...

class finfo:
    bits: _int
    min: _float
    max: _float
    eps: _float
    tiny: _float
    smallest_normal: _float
    resolution: _float
    dtype: str

    @overload
    def __init__(self, dtype: _dtype) -> None: ...
    @overload
    def __init__(self) -> None: ...

float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
bfloat16: dtype = ...
float8_e4m3fn: dtype = ...
float8_e4m3fnuz: dtype = ...
float8_e5m2: dtype = ...
float8_e5m2fnuz: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
chalf: dtype = ...
cfloat: dtype = ...
complex128: dtype = ...
cdouble: dtype = ...
quint8: dtype = ...
qint8: dtype = ...
qint32: dtype = ...
bool: dtype = ...
quint4x2: dtype = ...
quint2x4: dtype = ...
bits1x8: dtype = ...
bits2x4: dtype = ...
bits4x2: dtype = ...
bits8: dtype = ...
bits16: dtype = ...

# Defined in torch/csrc/Layout.cpp
class layout: ...

# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...
def DisableTorchFunctionSubclass(): ...

# Defined in torch/csrc/utils/tensor_layouts.cpp
strided: layout = ...
sparse_coo: layout = ...
sparse_csr: layout = ...
sparse_csc: layout = ...
sparse_bsr: layout = ...
sparse_bsc: layout = ...
_mkldnn: layout = ...
jagged: layout = ...

# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...

# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...

# Defined in torch/csrc/QScheme.cpp
class qscheme: ...

# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...

# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase:
    saved_tensors: Tuple[Tensor]
    _raw_saved_tensors: Tuple[Any]
    next_functions: Tuple[Tuple[Any, _int], ...]
    needs_input_grad: Tuple[_bool]
    metadata: dict
    _materialize_non_diff_grads: _bool
    # skip adding type hints for the fields that have wrappers defined
    # in torch/autograd/function.py

# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(Tensor):  # inherits from Tensor to appease mypy
    def __init__(
        self,
        data: Optional[Tensor] = ...,
        requires_grad: Optional[_bool] = ...,
        volatile: Optional[_bool] = ...,
        _grad_fn: Optional[_FunctionBase] = ...,
    ) -> None: ...

# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...
class JITException: ...

class Future(Generic[T]):
    def __init__(self, devices: List[device]) -> None: ...
    def done(self) -> _bool: ...
    def value(self) -> T: ...
    def wait(self) -> T: ...
    def add_done_callback(self, callback: Callable) -> None: ...
    def then(self, callback: Callable) -> Future[T]: ...
    def set_result(self, result: T) -> None: ...
    def _set_unwrap_func(self, callback: Callable) -> None: ...

class _Await:
    def __init__(self) -> None: ...
    def fn(self) -> Callable: ...
    def args(self) -> Tuple[Any, ...]: ...
    def is_nowait(self) -> _bool: ...

def _jit_set_num_profiled_runs(num: _size) -> _size: ...

# Defined in torch/csrc/jit/passes/mobile_optimizer_type.h
class _MobileOptimizerType: ...

CONV_BN_FUSION: _MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType
REMOVE_DROPOUT: _MobileOptimizerType
FUSE_ADD_RELU: _MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType
VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType

def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _awaitable(*args: Any, **kwargs: Any) -> _Await: ...
def _awaitable_wait(aw: _Await) -> Any: ...
def _awaitable_nowait(x: Any) -> _Await: ...
def _collect_all(futures: List[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
def unify_type_list(types: List[JitType]) -> JitType: ...
def _freeze_module(
    module: ScriptModule,
    preserved_attrs: List[str] = [],
    freeze_interfaces: _bool = True,
    preserveParameters: _bool = True,
) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(
    module: torch.jit.ScriptModule,
    other_methods: List[str] = [],
) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph: Graph): ...
def _jit_pass_remove_dropout(module: torch.jit.ScriptModule): ...
def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
def _get_operation_overload(
    op_name: str,
    op_overload_name: str,
) -> Tuple[Callable, Callable, List[Any]]: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(
    module: torch.jit.ScriptModule,
    optimization_blocklist: Set[_MobileOptimizerType],
    preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _clone_module_with_class(
    module: torch.jit.ScriptModule,
    ignored_methods: List[AnyStr],
    ignored_attributes: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_vulkan_optimize_for_mobile(
    module: torch.jit.ScriptModule,
    optimization_blocklist: Set[_MobileOptimizerType],
    preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_metal_optimize_for_mobile(
    module: torch.jit.ScriptModule,
    preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name: str) -> List[FunctionSchema]: ...
def _jit_get_all_schemas() -> List[FunctionSchema]: ...
def _jit_check_alias_annotation(
    g: Graph,
    args: Tuple[Any, ...],
    unqualified_op_name: str,
): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: torch.jit.ScriptModule): ...
def _jit_pass_insert_observers(
    module: torch.jit.ScriptModule,
    method_name: str,
    qconfig_dict: Dict[str, Any],
    inplace: _bool,
    quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant(
    module: torch.jit.ScriptModule,
    method_name: str,
    inplace: _bool,
    debug: _bool,
    quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant_for_ondevice_ptq(
    module: torch.jit.ScriptModule,
    method_name: str,
    inplace: _bool,
    debug: _bool,
    quant_type: _int,
): ...
def _jit_pass_quant_finalize(
    module: torch.jit.ScriptModule,
    quant_type: _int,
    preserved_attrs: Sequence[str],
): ...
def _jit_pass_quant_finalize_for_ondevice_ptq(
    module: torch.jit.ScriptModule,
    quant_type: _int,
    method_name: str,
): ...
def _jit_pass_insert_observer_method_for_ondevice_ptq(
    module: torch.jit.ScriptModule,
    method_name: str,
    qconfig_dict: Dict[str, Any],
    inplace: _bool,
    quant_type: _int,
): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(
    strategy: List[Tuple[str, _int]],
) -> List[Tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...

# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback = Callable[[str], Callable[..., Any]]

# Defined in torch/csrc/jit/python/script_init.cpp
#        and torch/csrc/jit/python/init.cpp
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(
    ModuleHook: Optional[Callable],
    FunctionHook: Optional[Callable],
) -> None: ...
def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(
    filename: Union[str, Path],
    map_location: Optional[DeviceLikeType],
): ...
def _load_for_lite_interpreter_from_buffer(
    buffer: BinaryIO,
    map_location: Optional[DeviceLikeType],
): ...
def _export_operator_list(module: LiteScriptModule): ...
def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ...
def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
def _backport_for_mobile(
    filename_input: Union[str, Path],
    filename_output: Union[str, Path],
    to_version: _int,
) -> None: ...
def _backport_for_mobile_from_buffer(
    buffer: BinaryIO,
    filename_output: Union[str, Path],
    to_version: _int,
) -> None: ...
def _backport_for_mobile_to_buffer(
    filename_input: Union[str, Path],
    to_version: _int,
) -> bytes: ...
def _backport_for_mobile_from_buffer_to_buffer(
    buffer: BinaryIO,
    to_version: _int,
) -> bytes: ...
def _get_model_ops_and_info(filename: Union[str, Path]): ...
def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> List[str]: ...
def _create_function_from_trace(
    qualname: str,
    func: Callable[..., Any],
    input_tuple: Tuple[Any, ...],
    var_lookup_fn: Callable[[Tensor], str],
    strict: _bool,
    force_outplace: _bool,
    argument_names: List[str],
) -> Tuple[Graph, Stack]: ...
def _create_function_from_trace_with_dict(
    qualname: str,
    func: Callable[..., Any],
    input_dict: Dict[str, Any],
    var_lookup_fn: Callable[[Tensor], str],
    strict: _bool,
    force_outplace: _bool,
    argument_names: List[str],
) -> Tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _get_upgraders_map_size() -> _int: ...
def _get_upgraders_entry_map() -> Dict[str, str]: ...
def _dump_upgraders_map() -> Dict[str, str]: ...
def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
def merge_type_from_type_comment(
    decl: Decl,
    type_annotation_decl: Decl,
    is_method: _bool,
) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool = False) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...
def _resolve_type_from_object(
    obj: Any,
    range: SourceRange,
    rcb: ResolutionCallback,
) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(
    overload_decl: Decl,
    implementation_def: Def,
    new_name: str,
) -> Def: ...
def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(
    graph: Graph,
    dynamic_axes: Dict[str, Dict[_int, str]],
    input_names: List[str],
) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(
    graph: Graph,
    params_dict: Dict[str, IValue],
    opset_version: _int,
) -> None: ...
def _jit_pass_onnx_assign_output_shape(
    graph: Graph,
    tensors: List[Tensor],
    desc: IODescriptor,
    onnx_shape_inference: _bool,
    is_script: _bool,
    opset_version: _int,
) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(
    graph: Graph,
    module: Optional[ScriptModule] = None,
) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(
    graph: Graph,
    disable_shape_peepholes: _bool = False,
) -> None: ...
def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
    graph: Graph,
    paramsDict: Dict[str, IValue],
    caffe2: _bool,
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
    graph: Graph,
    paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(
    pattern: str,
    fused_node_name: str,
    graph: Graph,
) -> None: ...
def _jit_onnx_list_model_parameters(
    module: ScriptModule,
) -> Tuple[ScriptModule, List[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(
    graph: Graph,
    _jit_pass_onnx: _onnx.OperatorExportTypes,
) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(
    graph: Graph,
    lowprecision_cast: _bool,
    opset_version: _int,
) -> None: ...
def _jit_pass_onnx_peephole(
    graph: Graph,
    opset_version: _int,
    fixed_batch_size: _bool,
) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(
    graph: Graph,
    module_names: Set[str],
    param_names: List[str],
) -> Dict[Node, Dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(
    graph: Graph,
    onnx_attrs: Dict[str, Any],
) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(
    graph: Graph,
    params_dict: Dict[str, IValue],
    is_train: _bool,
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(
    graph: Graph,
    paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(
    graph: Graph,
    paramsDict: Dict[str, IValue],
    opset_version: _int,
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(
    graph: Graph,
    paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(
    params: Dict[str, IValue],
) -> Dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(
    n: Node,
    paramsDict: Dict[str, IValue],
    opset_version: _int,
) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(
    block: Block,
    n: Node,
    env: Dict[Value, Value],
) -> List[Value]: ...
def _jit_pass_onnx_block(
    old_block: Block,
    new_block: Block,
    operator_export_type: _onnx.OperatorExportTypes,
    env: Dict[Value, Value],
    is_sub_block: _bool,
) -> Dict[Value, Value]: ...
def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ...
def _jit_pass_fixup_onnx_controlflow_node(
    n: Node,
    opset_version: _int,
) -> List[Value]: ...
def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ...
def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...
def _generate_upgraders_graph() -> Dict[str, Graph]: ...
def _calculate_package_version_based_on_upgraders(val: _bool): ...
def _get_version_calculator_flag() -> _bool: ...
def _jit_script_interface_compile(
    name: str,
    class_def: ClassDef,
    rcb: ResolutionCallback,
    is_module: _bool,
): ...
def _jit_script_compile_overload(
    qualname: str,
    overload_decl: Decl,
    implementation_def: Def,
    rcb: ResolutionCallback,
    implementation_defaults: Dict[str, Any],
    signature: Any,
): ...
def _jit_script_compile(
    qual_name: str,
    definition: Def,
    rcb: ResolutionCallback,
    defaults: Dict[str, Any],
): ...
def _jit_script_class_compile(
    qual_name: str,
    definition: ClassDef,
    defaults: Dict[str, Dict[str, Any]],
    rcb: ResolutionCallback,
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
    cu: CompilationUnit,
    filename: Union[str, Path],
    map_location: Optional[DeviceLikeType],
    extra_files: Dict[str, Any],
) -> ScriptModule: ...
def import_ir_module_from_buffer(
    cu: CompilationUnit,
    buffer: BinaryIO,
    map_location: Optional[DeviceLikeType],
    extra_files: Dict[str, Any],
) -> ScriptModule: ...
def _import_ir_module_from_package(
    cu: CompilationUnit,
    reader: PyTorchFileReader,
    storage_context: DeserializationStorageContext,
    map_location: Optional[DeviceLikeType],
    ts_id: str,
) -> ScriptModule: ...
def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str) -> None: ...
def _propagate_and_assign_input_shapes(
    graph: Graph,
    inputs: Tuple[Tensor, ...],
    param_count_list: List[_int],
    with_grad: _bool,
    propagate: _bool,
) -> Graph: ...

# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState: ...

# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb:
    def __str__(self) -> str: ...

class _InsertPoint:
    def __enter__(self) -> None: ...
    def __exit__(self, *args) -> None: ...

# Defined in torch/csrc/jit/ir/ir.h
class Use:
    @property
    def user(self) -> Node: ...
    @property
    def offset(self) -> _int: ...
    def isAfter(self, other: Use) -> _bool: ...

# Defined in torch/csrc/jit/ir/ir.h
class Value:
    def type(self) -> JitType: ...
    def setType(self, t: JitType) -> Value: ...
    def setTypeAs(self, other: Value) -> Value: ...
    def inferTypeFrom(self, t: Tensor) -> None: ...
    def debugName(self) -> str: ...
    def setDebugName(self, name: str) -> None: ...
    def unique(self) -> _int: ...
    def offset(self) -> _int: ...
    def node(self) -> Node: ...
    def uses(self) -> List[Use]: ...
    def replaceAllUsesWith(self, val: Value) -> None: ...
    def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
    def requires_grad(self) -> _bool: ...
    def requiresGrad(self) -> _bool: ...
    def copyMetadata(self, other: Value) -> Value: ...
    def isCompleteTensor(self) -> _bool: ...
    def toIValue(self) -> IValue: ...

# Defined in torch/csrc/jit/ir/ir.h
class Block:
    def inputs(self) -> Iterator[Value]: ...
    def outputs(self) -> Iterator[Value]: ...
    def nodes(self) -> Iterator[Node]: ...
    def paramNode(self) -> Node: ...
    def returnNode(self) -> Node: ...
    def owningNode(self) -> Node: ...
    def registerOutput(self, n: Value) -> _int: ...
    def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ...

# Defined in torch/csrc/jit/ir/ir.h
class Node:
    def __getitem__(self, key: str) -> Any: ...
    def schema(self) -> str: ...
    def input(self) -> Value: ...
    def inputs(self) -> Iterator[Value]: ...
    def inputsAt(self, idx: _int) -> Value: ...
    def inputsSize(self) -> _int: ...
    def output(self) -> Value: ...
    def outputs(self) -> Iterator[Value]: ...
    def outputsAt(self, idx: _int) -> Value: ...
    def outputsSize(self) -> _int: ...
    def hasMultipleOutputs(self) -> _bool: ...
    def blocks(self) -> List[Block]: ...
    def addBlock(self) -> Block: ...
    def mustBeNone(self) -> _bool: ...
    def matches(self, pattern: str) -> _bool: ...
    def kind(self) -> str: ...
    def kindOf(self, name: str) -> str: ...
    def addInput(self, name: str) -> Value: ...
    def replaceInput(self, i: _int, newValue: Value) -> Value: ...
    def replaceInputWith(self, from_: Value, to: Value) -> None: ...
    def replaceAllUsesWith(self, n: Node) -> None: ...
    def insertBefore(self, n: Node) -> Node: ...
    def insertAfter(self, n: Node) -> Node: ...
    def isBefore(self, n: Node) -> _bool: ...
    def isAfter(self, n: Node) -> _bool: ...
    def moveBefore(self, n: Node) -> None: ...
    def moveAfter(self, n: Node) -> None: ...
    def removeInput(self, i: _int) -> None: ...
    def removeAllInputs(self, i: _int) -> None: ...
    def hasUses(self) -> _bool: ...
    def eraseOutput(self, i: _int) -> None: ...
    def addOutput(self) -> Value: ...
    def scopeName(self) -> str: ...
    def isNondeterministic(self) -> _bool: ...
    def copyAttributes(self, rhs: Node) -> Node: ...
    def copyMetadata(self, rhs: Node) -> Node: ...
    def hasAttributes(self) -> _bool: ...
    def hasAttribute(self, name: str) -> _bool: ...
    def removeAttribute(self, attr: str) -> Node: ...
    def namedInput(self, name: str) -> Value: ...
    def sourceRange(self) -> SourceRange: ...
    def owningBlock(self) -> Block: ...
    def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
    def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
    def getModuleHierarchy(self) -> str: ...
    def prev(self) -> Node: ...
    def destroy(self) -> None: ...
    def attributeNames(self) -> List[str]: ...

    # Accessors for attributes as types.
    def f(self, name: str) -> _float: ...
    def f_(self, name: str, val: _float) -> Node: ...
    def fs(self, name: str) -> List[_float]: ...
    def fs_(self, name: str, val: List[_float]) -> Node: ...
    def c(self, name: str) -> complex: ...
    def c_(self, name: str, val: complex) -> Node: ...
    def s(self, name: str) -> str: ...
    def s_(self, name: str, val: str) -> Node: ...
    def ss(self, name: str) -> List[str]: ...
    def ss_(self, name: str, val: List[str]) -> Node: ...
    def i(self, name: str) -> _int: ...
    def i_(self, name: str, val: _int) -> Node: ...
    # Cannot define "is" like this because it's a reserved keyword in python.
    # def is(self, name: str) -> List[_int]: ...
    # def is_(self, name: str, val: List[_int]) -> Node: ...
    def g(self, name: str) -> Graph: ...
    def g_(self, name: str, val: Graph) -> Node: ...
    def gs(self, name: str) -> List[Graph]: ...
    def gs_(self, name: str, val: List[Graph]) -> Node: ...
    def ival(self, name: str) -> IValue: ...
    def ival_(self, name: str, val: IValue) -> Node: ...
    def t(self, name: str) -> Tensor: ...
    def t_(self, name: str, val: Tensor) -> Node: ...
    def ts(self, name: str) -> List[Tensor]: ...
    def ts_(self, name: str, val: List[Tensor]) -> Node: ...
    def ty(self, name: str) -> JitType: ...
    def ty_(self, name: str, val: JitType) -> Node: ...
    def tys(self, name: str) -> List[JitType]: ...
    def tys_(self, name: str, val: List[JitType]) -> Node: ...

# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
    def inputs(self) -> Iterator[Value]: ...
    def outputs(self) -> Iterator[Value]: ...
    def nodes(self) -> Iterator[Node]: ...
    def param_node(self) -> Node: ...
    def return_node(self) -> Node: ...
    def addInput(self, name: str = "") -> Value: ...
    def eraseInput(self, i: _int) -> None: ...
    def registerOutput(self, n: Value) -> _int: ...
    def eraseOutput(self, i: _int) -> None: ...
    def create(self, name: str, args, num_outputs: _int) -> Node: ...
    def appendNode(self, n: Node) -> Node: ...
    def prependNode(self, n: Node) -> Node: ...
    def insertNode(self, n: Node) -> Node: ...
    def block(self) -> Block: ...
    def lint(self) -> None: ...
    def alias_db(self) -> AliasDb: ...
    def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
    def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
    def insertPoint(self) -> Node: ...
    def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
    def makeMultiOutputIntoTuple(self) -> None: ...
    def copy(self) -> Graph: ...

# Defined in torch/aten/src/ATen/core/alias_info.h
class AliasInfo:
    is_write: _bool
    before_set: Set[str]
    after_set: Set[str]

# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
    name: str
    type: JitType
    default_value: Optional[Any]
    def has_default_value(self) -> _bool: ...
    kwarg_only: _bool
    is_out: _bool
    alias_info: Optional[AliasInfo]

class FunctionSchema:
    arguments: List[Argument]
    returns: List[Argument]
    name: str
    overload_name: str

class _UpgraderEntry:
    bumped_at_version: _int
    upgrader_name: str
    old_schema: str
    def __init__(
        self,
        bumped_at_version: _int,
        upgrader_name: str,
        old_schema: str,
    ) -> None: ...

class _UpgraderRange:
    min_version: _int
    max_version: _int

def _get_max_operator_version() -> _int: ...
def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...
def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...
def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...
def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer:
    def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
    def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
    def write_files(self) -> None: ...
    def storage_context(self) -> SerializationStorageContext: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext:
    def __init__(self) -> None: ...
    def has_storage(self, storage: Storage) -> _bool: ...
    def get_or_add_storage(self, storage: Storage) -> _int: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext:
    def __init__(self) -> None: ...
    def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
    def has_storage(self, name: str) -> _bool: ...
    def add_storage(self, name: str, tensor: Tensor) -> _int: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
    def __init__(self, obj: Any) -> None: ...
    def set_module_dict(self): ...
    def set_module_list(self): ...
    def set_parameter_list(self): ...
    def set_parameter_dict(self): ...
    def add_attribute(
        self,
        name: str,
        ty: JitType,
        is_param: _bool,
        is_buffer: _bool,
    ): ...
    def add_module(self, name: str, meta: ConcreteModuleType): ...
    def add_constant(self, name: str, value: Any): ...
    def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
    def add_builtin_function(self, name: str, symbol_name: str): ...
    def add_failed_attribute(self, name: str, failure_reason: str): ...
    def add_function_attribute(
        self,
        name: str,
        ty: JitType,
        func: Callable[..., Any],
    ): ...
    def add_ignored_attribute(self, name: str): ...
    def add_ignored_attributes(self, names: List[str]): ...
    def add_forward_hook(self, hook: Callable[..., Any]): ...
    def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...

class ConcreteModuleType:
    def get_constants(self) -> Dict[str, Any]: ...
    def equals(self, other: ConcreteModuleType) -> _bool: ...
    @staticmethod
    def from_jit_type(ty: JitType) -> ConcreteModuleType: ...

class CallStack:
    def __init__(self, name: str, range: SourceRange): ...

class ErrorReport:
    def __init__(self, range: SourceRange) -> None: ...
    def what(self) -> str: ...
    @staticmethod
    def call_stack() -> str: ...

class CompilationUnit:
    def __init__(self, lang: str = ..., _frames_up: _int = ...) -> None: ...
    def find_function(self, name: str) -> ScriptFunction: ...
    def __getattr__(self, name: str) -> ScriptFunction: ...
    def define(
        self,
        script: str,
        rcb: ResolutionCallback = ...,
        _frames_up: _int = ...,
    ): ...
    def get_interface(self, name: str) -> InterfaceType: ...
    def get_functions(self) -> List[ScriptFunction]: ...
    def create_function(
        self,
        name: str,
        graph: Graph,
        shouldMangle: _bool = ...,
    ) -> ScriptFunction: ...
    def get_class(self, name: str) -> ClassType: ...

class ScriptObject:
    def setattr(self, name: str, value: Any): ...

class ScriptModule(ScriptObject):
    def _method_names(self) -> List[str]: ...
    def _get_method(self, name: str) -> ScriptMethod: ...

class LiteScriptModule:
    def __call__(self, *input): ...
    def find_method(self, method_name: str): ...
    def forward(self, *input) -> List[str]: ...
    def run_method(self, method_name: str, *input): ...

# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptFunction(Generic[P, ReturnVal]):
    def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
    def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
    def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
    @property
    def graph(self) -> Graph: ...
    def inlined_graph(self) -> Graph: ...
    def schema(self) -> FunctionSchema: ...
    def code(self) -> str: ...
    def name(self) -> str: ...
    @property
    def qualified_name(self) -> str: ...

# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptMethod(Generic[P, ReturnVal]):
    graph: Graph
    def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
    @property
    def owner(self) -> ScriptModule: ...
    @property
    def name(self) -> str: ...

class ScriptDict(Generic[K, T]):
    def __init__(self, dict: Dict[K, T]) -> None: ...
    def __len__(self) -> _int: ...
    def __contains__(self, key: K) -> _bool: ...
    def __getitem__(self, key: K) -> T: ...
    def __setitem__(self, key: K, value: T) -> None: ...
    def __delitem__(self, key: K) -> None: ...
    def __iter__(self) -> Iterator[K]: ...
    def items(self) -> Iterator[tuple[K, T]]: ...
    def keys(self) -> Iterator[K]: ...

class ScriptList(Generic[T]):
    def __init__(self, list: List[T]) -> None: ...
    def __len__(self) -> _int: ...
    def __contains__(self, item: T) -> _bool: ...
    @overload
    def __getitem__(self, idx: _int) -> T: ...
    @overload
    def __getitem__(self, idx: slice) -> ScriptList[T]: ...
    @overload
    def __setitem__(self, idx: _int, value: T) -> None: ...
    @overload
    def __setitem__(self, idx: slice, value: List[T]) -> None: ...
    def __delitem__(self, idx: _int) -> None: ...
    def __iter__(self) -> Iterator[T]: ...
    def count(self, value: T) -> _int: ...
    def remove(self, value: T) -> None: ...
    def append(self, value: T) -> None: ...
    def clear(self) -> None: ...
    @overload
    def extend(self, values: List[T]) -> None: ...
    @overload
    def extend(self, values: Iterable[T]) -> None: ...
    @overload
    def pop(self) -> T: ...
    @overload
    def pop(self, idx: _int) -> T: ...

class ModuleDict:
    def __init__(self, mod: ScriptModule) -> None: ...
    def items(self) -> List[Tuple[str, Any]]: ...

class ParameterDict:
    def __init__(self, mod: ScriptModule) -> None: ...

class BufferDict:
    def __init__(self, mod: ScriptModule) -> None: ...

# Defined in torch/csrc/jit/api/module.h
class Module: ...

# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ...  # THPModule_initExtension
def _autograd_init() -> _bool: ...  # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ...  # THPModule_addDocStr
def _init_names(arg: Sequence[Type]) -> None: ...  # THPModule_initNames
def _has_distributed() -> _bool: ...  # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ...  # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ...  # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ...  # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ...  # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ...  # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ...  # THPModule_crashIfATenASAN
def _show_config() -> str: ...  # THPModule_showConfig
def _cxx_flags() -> str: ...  # THPModule_cxxFlags
def _parallel_info() -> str: ...  # THPModule_parallelInfo
def _get_cpu_capability() -> str: ...  # THPModule_getCpuCapability
def _set_backcompat_broadcast_warn(
    arg: _bool,
) -> None: ...  # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> _bool: ...  # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(
    arg: _bool,
) -> None: ...  # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ...  # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ...  # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ...  # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ...  # THPModule_getNumInteropThreads
def set_num_interop_threads(
    nthreads: _int,
) -> None: ...  # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ...  # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledCuDNN
def _get_flash_sdp_enabled() -> _bool: ...  # THPModule_userEnabledFusedSDP
def _set_sdp_use_flash(arg: _bool) -> None: ...  # THPModule_setSDPUseFlash
def _get_mem_efficient_sdp_enabled() -> _bool: ...  # THPModule_userEnabledMathSDP
def _set_sdp_use_mem_efficient(
    arg: _bool,
) -> None: ...  # THPModule_setSDPUseMemEfficient
def _get_math_sdp_enabled() -> _bool: ...  # THPModule_userEnabledMathSDP
def _set_sdp_use_math(arg: _bool) -> None: ...  # THPModule_setSDPUseMath
def _get_mkldnn_enabled() -> _bool: ...  # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ...  # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ...  # THPModule_setBenchmarkCuDNN
def _get_cudnn_deterministic() -> _bool: ...  # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ...  # THPModule_setDeterministicCuDNN
def _get_deterministic_algorithms() -> _bool: ...  # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> _bool: ...  # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(
    mode: _bool,
    *,
    warn_only: _bool = ...,
) -> None: ...  # THPModule_setDeterministicAlgorithms
def _get_deterministic_fill_uninitialized_memory() -> _bool: ...  # THPModule_deterministicFillUninitializedMemory
def _set_deterministic_fill_uninitialized_memory(arg: _bool) -> None: ...  # THPModule_setDeterministicFillUninitializedMemory
def _get_warnAlways() -> _bool: ...  # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ...  # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ...  # THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(
    arg: str,
) -> None: ...  # THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ...  # THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(
    arg: _bool,
) -> None: ...  # THPModule_setAllowFP16ReductionCuBLAS
def _get_cublas_allow_bf16_reduced_precision_reduction() -> _bool: ...  # THPModule_allowBF16ReductionCuBLAS
def _set_cublas_allow_bf16_reduced_precision_reduction(
    arg: _bool,
) -> None: ...  # THPModule_setAllowBF16ReductionCuBLAS
def _set_conj(x: Tensor, conj: _bool) -> None: ...
def _set_neg(x: Tensor, neg: _bool) -> None: ...
def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ...
def _meta_in_tls_dispatch_include() -> _bool: ...
def _stash_obj_in_tls(key: str, arg: Any) -> None: ...
def _get_obj_in_tls(key: str) -> Any: ...
def _is_key_in_tls(key: str) -> _bool: ...
def _select_conv_backend(*args, **kwargs) -> ConvBackend: ...
def _conv_determine_backend_memory_format(
    input: Tensor,
    weight: Tensor,
    backend: ConvBackend,
) -> memory_format: ...
def _has_storage(x: Tensor) -> _bool: ...
def _construct_storage_from_data_pointer(data_ptr: _int, device: torch.device, size: _int) -> Storage: ...
def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ...
def _group_tensors_by_device_and_dtype(nested_tensorlists: List[List[Optional[Tensor]]], with_indices: _bool = False) -> Dict[Tuple[torch.device, str], Tuple[List[List[Optional[Tensor]]], List[_int]]]: ...

# NB: There is no Capsule type in typing, see
# https://code.activestate.com/lists/python-dev/139675/
def _to_dlpack(data: Tensor) -> Any: ...  # THPModule_toDLPack
def _from_dlpack(data: Any) -> Tensor: ...  # THPModule_fromDLPack
def _get_cpp_backtrace(
    frames_to_skip: _int,
    maximum_number_of_frames: _int,
) -> str: ...  # THPModule_getCppBacktrace
def set_flush_denormal(arg: _bool) -> _bool: ...  # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ...  # THPModule_getDefaultDtype
def _get_default_device() -> str: ...  # THPModule_getDefaultDevice
def _get_qengine() -> _int: ...  # THPModule_qEngine
def _set_qengine(qengine: _int) -> None: ...  # THPModule_setQEngine
def _supported_qengines() -> List[_int]: ...  # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ...  # THPModule_isEnabledXNNPACK
def _check_sparse_tensor_invariants() -> _bool: ...  # THPModule_checkSparseTensorInvariants
def _set_check_sparse_tensor_invariants(
    arg: _bool,
) -> None: ...  # THPModule_setCheckSparseTensorInvariants
def _set_default_mobile_cpu_allocator() -> None: ...  # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> None: ...  # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ...  # THPModule_isEnabledTorchFunction
def _has_torch_function(
    args: Iterable[Any],
) -> _bool: ...  # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ...  # THPModule_has_torch_function_unary
def _has_torch_function_variadic(
    *args: Any,
) -> _bool: ...  # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ...  # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ...  # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ...  # LogAPIUsageOnceFromPython
def _log_api_usage_metadata(event: str, metadata_map: Dict[str, str]) -> None: ...  # LogAPIUsageMetadataFromPython
def _demangle(str) -> str: ...  # c10::demangle
def _disabled_torch_function_impl(
    func: Callable,
    types: Iterable[Type],
    args: Tuple,
    kwargs: Dict,
) -> Any: ...  # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(
    func: Callable,
    types: Iterable[Type],
    args: Tuple,
    kwargs: Dict,
) -> Any: ...  # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...

class _LinalgBackend:
    Default: _LinalgBackend
    Cusolver: _LinalgBackend
    Magma: _LinalgBackend

class ConvBackend(Enum): ...

class Tag(Enum):
    core: _int = 0
    data_dependent_output: _int = 1
    dynamic_output_shape: _int = 2
    generated: _int = 3
    inplace_view: _int = 4
    nondeterministic_bitwise: _int = 5
    nondeterministic_seeded: _int = 6
    pointwise: _int = 7
    pt2_compliant_tag: _int = 8
    view_copy: _int = 9

# Defined in `valgrind.h` and `callgrind.h` respectively.
def _valgrind_supported_platform() -> _bool: ...  # NVALGRIND
def _valgrind_toggle() -> None: ...  # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> None: ...  # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS

has_openmp: _bool
has_mkl: _bool
_has_mps: _bool
has_lapack: _bool
_has_cuda: _bool
_has_mkldnn: _bool
_has_cudnn: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator

# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def _set_fwd_grad_enabled(enabled: _bool) -> None: ...
def _is_fwd_grad_enabled() -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
def set_autocast_enabled(enabled: _bool) -> None: ...
def is_autocast_enabled() -> _bool: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def _is_any_autocast_enabled() -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def _increment_version(tensor: Tensor) -> None: ...
def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def is_anomaly_check_nan_enabled() -> _bool: ...
def _is_multithreading_enabled() -> _bool: ...
def _set_multithreading_enabled(enabled: _bool) -> None: ...
def _set_view_replay_enabled(enabled: _bool) -> None: ...
def _is_view_replay_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...
def _is_torch_function_mode_enabled() -> _bool: ...
def _set_torch_function_mode(cls: Any) -> None: ...
def _push_on_torch_function_stack(cls: Any) -> None: ...
def _pop_torch_function_stack() -> Any: ...
def _get_function_stack_at(idx: _int) -> Any: ...
def _len_torch_function_stack() -> _int: ...
def _set_torch_dispatch_mode(cls: Any) -> None: ...
def _push_on_torch_dispatch_stack(cls: Any) -> None: ...
def _pop_torch_dispatch_stack(mode_key: Optional[torch._C._TorchDispatchModeKey] = None) -> Any: ...
def _get_dispatch_mode(mode_key: Optional[torch._C._TorchDispatchModeKey]) -> Any: ...
def _unset_dispatch_mode(mode: torch._C._TorchDispatchModeKey) -> Any: ...
def _set_dispatch_mode(mode: Any) -> None: ...
def _get_dispatch_stack_at(idx: _int) -> Any: ...
def _len_torch_dispatch_stack() -> _int: ...

class _DisableTorchDispatch:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _EnableTorchFunction:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _EnablePythonDispatcher:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _DisablePythonDispatcher:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _EnablePreDispatch:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _DisableFuncTorch:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _DisableAutocast:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _InferenceMode:
    def __init__(self, enabled: _bool): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

def _set_autograd_fallback_mode(mode: str) -> None: ...
def _get_autograd_fallback_mode() -> str: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase: ...
class NoopLogger(LoggerBase): ...
class LockingLogger(LoggerBase): ...

class AggregationType(Enum):
    SUM = 0
    AVG = 1

class FileCheck:
    def run(self, test_string: str) -> None: ...
    def check(self, test_string: str) -> FileCheck: ...
    def check_not(self, test_string: str) -> FileCheck: ...
    def check_same(self, test_string: str) -> FileCheck: ...
    def check_next(self, test_string: str) -> FileCheck: ...
    def check_count(
        self,
        test_string: str,
        count: _int,
        exactly: _bool = False,
    ) -> FileCheck: ...
    def check_dag(self, test_string: str) -> FileCheck: ...
    def check_source_highlighted(self, test_string: str) -> FileCheck: ...
    def check_regex(self, test_string: str) -> FileCheck: ...

# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader:
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def get_record(self, name: str) -> bytes: ...
    def serialization_id(self) -> str: ...

class PyTorchFileWriter:
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def write_record(self, name: str, data: Union[bytes, _int], size: _int) -> None: ...
    def write_end_of_file(self) -> None: ...
    def set_min_version(self, version: _int) -> None: ...
    def get_all_written_records(self) -> List[str]: ...
    def archive_name(self) -> str: ...
    def serialization_id(self) -> str: ...

def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_cse(Graph) -> _bool: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...

# Defined in torch/csrc/jit/python/python_custom_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...

# Defined in torch/csrc/Module.cpp
def _rename_privateuse1_backend(backend: str) -> None: ...
def _get_privateuse1_backend_name() -> str: ...

# Defined in torch/csrc/Generator.cpp
class Generator:
    device: _device
    def __init__(self, device: Optional[DeviceLikeType] = None) -> None: ...
    def get_state(self) -> Tensor: ...
    def set_state(self, _new_state: Tensor) -> Generator: ...
    def set_offset(self, offset: _int) -> Generator: ...
    def get_offset(self) -> _int: ...
    def manual_seed(self, seed: _int) -> Generator: ...
    def seed(self) -> _int: ...
    def initial_seed(self) -> _int: ...

# Defined in torch/csrc/utils/python_dispatch.cpp

class _DispatchOperatorHandle:
    def schema(self) -> FunctionSchema: ...

class _DispatchModule:
    def def_(self, schema: str, alias: str = "") -> _DispatchModule: ...
    def def_legacy(self, schema: str) -> _DispatchModule: ...
    def def_name_t_t(
        self,
        name: str,
        dispatch: str,
        debug: str = "default_def_name_t_t",
    ) -> _DispatchModule: ...
    def def_schema_t_t(
        self,
        schema: str,
        dispatch: str,
        alias: str,
        debug: str = "default_def_schema_t_t",
    ) -> _DispatchModule: ...
    def impl_t_t(
        self,
        name: str,
        dispatch: str,
        debug: str = "impl_t_t",
    ) -> _DispatchModule: ...
    def impl(self, name: str, dispatch: str, func: Callable) -> _DispatchModule: ...
    def define(self, schema: str, alias: str = "") -> _DispatchModule: ...
    def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ...

def _dispatch_library(
    kind: str,
    name: str,
    dispatch: str,
    file: str = "",
    linenum: Any = 0,
) -> _DispatchModule: ...
def _dispatch_dump(name: str) -> str: ...
def _dispatch_dump_table(name: str) -> str: ...
def _dispatch_check_invariants(name: str) -> None: ...
def _dispatch_check_all_invariants() -> None: ...
def _dispatch_call_boxed(handle: _DispatchOperatorHandle, *args, **kwargs) -> Any: ...
def _dispatch_find_schema_or_throw(name: str, overload_name: str) -> _DispatchOperatorHandle: ...
def _dispatch_set_report_error_callback(handle: _DispatchOperatorHandle, callback: Callable) -> None: ...
def _dispatch_has_kernel(name: str) -> _bool: ...
def _dispatch_has_kernel_for_dispatch_key(
    name: str,
    dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_has_kernel_for_any_dispatch_key(
    name: str,
    dispatch_key_set: DispatchKeySet,
) -> _bool: ...
def _dispatch_has_computed_kernel_for_dispatch_key(
    name: str,
    dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_find_dangling_impls() -> List[str]: ...
def _dispatch_get_all_op_names() -> List[str]: ...
def _dispatch_tls_set_dispatch_key_excluded(
    dispatch: _dispatchkey,
    val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_tls_set_dispatch_key_included(
    dispatch: _dispatchkey,
    val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ...
def _dispatch_key_name(dispatch: _dispatchkey) -> str: ...
def _dispatch_key_for_device(device_type: str) -> str: ...
def _parse_dispatch_key(key: str) -> Optional[DispatchKey]: ...
def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ...
def _dispatch_num_backends() -> _int: ...
def _dispatch_pystub(name: str, overload: str) -> Optional[Tuple[str, str]]: ...
def _dispatch_is_alias_key(dispatch: _dispatchkey) -> _bool: ...
def _functionality_to_backend_keys(dispatch: _dispatchkey) -> List[DispatchKey]: ...
def _functionalization_reapply_views_tls() -> _bool: ...

class DispatchKey(Enum):
    Undefined: DispatchKey = ...
    FPGA: DispatchKey = ...
    ORT: DispatchKey = ...
    Vulkan: DispatchKey = ...
    Metal: DispatchKey = ...
    MKLDNN: DispatchKey = ...
    OpenGL: DispatchKey = ...
    OpenCL: DispatchKey = ...
    IDEEP: DispatchKey = ...
    CustomRNGKeyId: DispatchKey = ...
    MkldnnCPU: DispatchKey = ...
    Sparse: DispatchKey = ...
    SparseCsrCPU: DispatchKey = ...
    SparseCsrCUDA: DispatchKey = ...
    NestedTensor: DispatchKey = ...
    Dense: DispatchKey = ...
    Python: DispatchKey = ...
    FuncTorchDynamicLayerBackMode: DispatchKey = ...
    ZeroTensor: DispatchKey = ...
    Conjugate: DispatchKey = ...
    Negative: DispatchKey = ...
    BackendSelect: DispatchKey = ...
    Named: DispatchKey = ...
    AutogradOther: DispatchKey = ...
    AutogradFunctionality: DispatchKey = ...
    AutogradNestedTensor: DispatchKey = ...
    Tracer: DispatchKey = ...
    Autocast: DispatchKey = ...
    Batched: DispatchKey = ...
    VmapMode: DispatchKey = ...
    FuncTorchGradWrapper: DispatchKey = ...
    FuncTorchBatched: DispatchKey = ...
    BatchedNestedTensor: DispatchKey = ...
    FuncTorchVmapMode: DispatchKey = ...
    FuncTorchDynamicLayerFrontMode: DispatchKey = ...
    Functionalize: DispatchKey = ...
    TESTING_ONLY_GenericWrapper: DispatchKey = ...
    TESTING_ONLY_GenericMode: DispatchKey = ...
    ADInplaceOrView: DispatchKey = ...
    Autograd: DispatchKey = ...
    CompositeImplicitAutograd: DispatchKey = ...
    CompositeImplicitAutogradNestedTensor: DispatchKey = ...
    CompositeExplicitAutograd: DispatchKey = ...
    CompositeExplicitAutogradNonFunctional: DispatchKey = ...
    FuncTorchBatchedDecomposition: DispatchKey = ...
    CPU: DispatchKey = ...
    CUDA: DispatchKey = ...
    HIP: DispatchKey = ...
    XLA: DispatchKey = ...
    MTIA: DispatchKey = ...
    MPS: DispatchKey = ...
    IPU: DispatchKey = ...
    XPU: DispatchKey = ...
    HPU: DispatchKey = ...
    VE: DispatchKey = ...
    Lazy: DispatchKey = ...
    Meta: DispatchKey = ...
    PrivateUse1: DispatchKey = ...
    PrivateUse2: DispatchKey = ...
    PrivateUse3: DispatchKey = ...
    QuantizedCPU: DispatchKey = ...
    QuantizedCUDA: DispatchKey = ...
    QuantizedHIP: DispatchKey = ...
    QuantizedXLA: DispatchKey = ...
    QuantizedMTIA: DispatchKey = ...
    QuantizedMPS: DispatchKey = ...
    QuantizedIPU: DispatchKey = ...
    QuantizedXPU: DispatchKey = ...
    QuantizedHPU: DispatchKey = ...
    QuantizedVE: DispatchKey = ...
    QuantizedLazy: DispatchKey = ...
    QuantizedMeta: DispatchKey = ...
    QuantizedPrivateUse1: DispatchKey = ...
    QuantizedPrivateUse2: DispatchKey = ...
    QuantizedPrivateUse3: DispatchKey = ...
    SparseCPU: DispatchKey = ...
    SparseCUDA: DispatchKey = ...
    SparseHIP: DispatchKey = ...
    SparseXLA: DispatchKey = ...
    SparseMTIA: DispatchKey = ...
    SparseMPS: DispatchKey = ...
    SparseIPU: DispatchKey = ...
    SparseXPU: DispatchKey = ...
    SparseHPU: DispatchKey = ...
    SparseVE: DispatchKey = ...
    SparseLazy: DispatchKey = ...
    SparseMeta: DispatchKey = ...
    SparsePrivateUse1: DispatchKey = ...
    SparsePrivateUse2: DispatchKey = ...
    SparsePrivateUse3: DispatchKey = ...
    NestedTensorCPU: DispatchKey = ...
    NestedTensorCUDA: DispatchKey = ...
    NestedTensorHIP: DispatchKey = ...
    NestedTensorXLA: DispatchKey = ...
    NestedTensorMTIA: DispatchKey = ...
    NestedTensorMPS: DispatchKey = ...
    NestedTensorIPU: DispatchKey = ...
    NestedTensorXPU: DispatchKey = ...
    NestedTensorHPU: DispatchKey = ...
    NestedTensorVE: DispatchKey = ...
    NestedTensorLazy: DispatchKey = ...
    NestedTensorMeta: DispatchKey = ...
    NestedTensorPrivateUse1: DispatchKey = ...
    NestedTensorPrivateUse2: DispatchKey = ...
    NestedTensorPrivateUse3: DispatchKey = ...
    AutogradCPU: DispatchKey = ...
    AutogradCUDA: DispatchKey = ...
    AutogradHIP: DispatchKey = ...
    AutogradXLA: DispatchKey = ...
    AutogradMTIA: DispatchKey = ...
    AutogradMPS: DispatchKey = ...
    AutogradIPU: DispatchKey = ...
    AutogradXPU: DispatchKey = ...
    AutogradHPU: DispatchKey = ...
    AutogradVE: DispatchKey = ...
    AutogradLazy: DispatchKey = ...
    AutogradMeta: DispatchKey = ...
    AutogradPrivateUse1: DispatchKey = ...
    AutogradPrivateUse2: DispatchKey = ...
    AutogradPrivateUse3: DispatchKey = ...

class DispatchKeySet:
    def __init__(self, key: DispatchKey) -> None: ...
    def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def highestPriorityTypeId(self) -> DispatchKey: ...
    def has(self, k: _dispatchkey) -> _bool: ...
    def add(self, k: _dispatchkey) -> DispatchKeySet: ...
    def remove(self, k: _dispatchkey) -> DispatchKeySet: ...
    def __repr__(self) -> str: ...

_dispatch_autogradother_backends: DispatchKeySet
_additional_keys_to_prop_for_wrapper_tensors: DispatchKeySet

def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ...
def _dispatch_keyset_full() -> DispatchKeySet: ...
def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ...
def _dispatch_get_backend_keyset_from_autograd(
    dispatch: _dispatchkey,
) -> DispatchKeySet: ...
def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ...
def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ...
def _dispatch_tls_local_include_set() -> DispatchKeySet: ...
def _dispatch_is_included_in_alias(
    dispatch_a: _dispatchkey,
    dispatch_b: _dispatchkey,
) -> _bool: ...
def _propagate_xla_data(a: Tensor, b: Tensor) -> None: ...
def _replace_(a: Tensor, b: Tensor) -> None: ...
def _commit_update(a: Tensor) -> None: ...

class _ExcludeDispatchKeyGuard:
    def __init__(self, keyset: DispatchKeySet): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _IncludeDispatchKeyGuard:
    def __init__(self, k: DispatchKey): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _ForceDispatchKeyGuard:
    def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

class _AutoDispatchBelowAutograd:
    def __init__(self): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
def _dispatch_get_registrations_for_dispatch_key(
    dispatch_key: str = "",
) -> List[str]: ...
def _are_functorch_transforms_active() -> _bool: ...

# Define in torch/csrc/autograd/init.cpp
def _set_python_dispatcher(dispatcher: object) -> None: ...

def _get_singleton_int(id: _int, coeff: _int) -> SymInt: ...

def _get_constant_bool_symnode(val: _bool) -> Any: ...

class _TorchDispatchModeKey(Enum):
    FAKE: _TorchDispatchModeKey = ...
    PROXY: _TorchDispatchModeKey = ...
    FUNCTIONAL: _TorchDispatchModeKey = ...

class _SetExcludeDispatchKeyGuard:
    def __init__(self, k: DispatchKey, enabled: _bool): ...
    def __enter__(self): ...
    def __exit__(self, exc_type, exc_value, traceback): ...

# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig:
    num_calling_threads: _int
    num_worker_threads: _int
    num_warmup_iters: _int
    num_iters: _int
    profiler_output_path: str

class BenchmarkExecutionStats:
    latency_avg_ms: _float
    num_iters: _int

class ThroughputBenchmark:
    def __init__(self, module: Any) -> None: ...
    def add_input(self, *args: Any, **kwargs: Any) -> None: ...
    def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
    def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...

# Defined in torch/csrc/Storage.cpp
class StorageBase(object): ...

# TODO: where
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class BFloat16Tensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class HalfTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...

# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
    def queue_callback(self, callback: Callable[[], None]) -> None: ...
    def run_backward(self, *args: Any, **kwargs: Any) -> Tuple[Tensor, ...]: ...
    def is_checkpoint_valid(self) -> _bool: ...

# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type): ...

# Defined in torch/csrc/autograd/python_variable.cpp
class TensorBase(metaclass=_TensorMeta):
    requires_grad: _bool
    retains_grad: _bool
    shape: Size
    data: Tensor
    names: List[str]
    device: _device
    dtype: _dtype
    layout: _layout
    real: Tensor
    imag: Tensor
    T: Tensor
    H: Tensor
    mT: Tensor
    mH: Tensor
    ndim: _int
    output_nr: _int
    _version: _int
    _base: Optional[Tensor]
    _cdata: _int
    grad_fn: Optional[_Node]
    _grad_fn: Any
    _grad: Optional[Tensor]
    grad: Optional[Tensor]
    _backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
    nbytes: _int
    itemsize: _int
    _has_symbolic_sizes_strides: _bool
    def __abs__(self) -> Tensor: ...
    def __add__(self, other: Any) -> Tensor: ...
    @overload
    def __and__(self, other: Tensor) -> Tensor: ...
    @overload
    def __and__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __and__(self, other: Any) -> Tensor: ...
    def __bool__(self) -> builtins.bool: ...
    def __complex__(self) -> builtins.complex: ...
    def __div__(self, other: Any) -> Tensor: ...
    def __eq__(self, other: Any) -> Tensor: ...  # type: ignore[override]
    def __float__(self) -> builtins.float: ...
    def __floordiv__(self, other: Any) -> Tensor: ...
    def __ge__(self, other: Any) -> Tensor: ...
    def __getitem__(self, indices: Union[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], tuple[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], ...]]) -> Tensor: ...
    def __gt__(self, other: Any) -> Tensor: ...
    def __iadd__(self, other: Any) -> Tensor: ...
    @overload
    def __iand__(self, other: Tensor) -> Tensor: ...
    @overload
    def __iand__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __iand__(self, other: Any) -> Tensor: ...
    def __idiv__(self, other: Any) -> Tensor: ...
    def __ifloordiv__(self, other: Any) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Any) -> Tensor: ...
    def __imod__(self, other: Any) -> Tensor: ...
    def __imul__(self, other: Any) -> Tensor: ...
    def __index__(self) -> builtins.int: ...
    @overload
    def __init__(self, *args: Any, device: Optional[DeviceLikeType] = None) -> None: ...
    @overload
    def __init__(self, storage: Storage) -> None: ...
    @overload
    def __init__(self, other: Tensor) -> None: ...
    @overload
    def __init__(self, size: _size, *, device: Optional[DeviceLikeType] = None) -> None: ...
    def __int__(self) -> builtins.int: ...
    def __invert__(self) -> Tensor: ...
    @overload
    def __ior__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ior__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __ior__(self, other: Any) -> Tensor: ...
    @overload
    def __irshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __irshift__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __irshift__(self, other: Any) -> Tensor: ...
    def __isub__(self, other: Any) -> Tensor: ...
    @overload
    def __ixor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ixor__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __ixor__(self, other: Any) -> Tensor: ...
    def __le__(self, other: Any) -> Tensor: ...
    def __long__(self) -> builtins.int: ...
    @overload
    def __lshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __lshift__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __lshift__(self, other: Any) -> Tensor: ...
    def __lt__(self, other: Any) -> Tensor: ...
    def __matmul__(self, other: Any) -> Tensor: ...
    def __mod__(self, other: Any) -> Tensor: ...
    def __mul__(self, other: Any) -> Tensor: ...
    def __ne__(self, other: Any) -> Tensor: ...  # type: ignore[override]
    def __neg__(self) -> Tensor: ...
    def __new__(self, *args, **kwargs) -> Tensor: ...
    def __nonzero__(self) -> builtins.bool: ...
    @overload
    def __or__(self, other: Tensor) -> Tensor: ...
    @overload
    def __or__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __or__(self, other: Any) -> Tensor: ...
    def __pow__(self, other: Any) -> Tensor: ...
    def __radd__(self, other: Any) -> Tensor: ...
    def __rand__(self, other: Any) -> Tensor: ...
    def __rfloordiv__(self, other: Any) -> Tensor: ...
    def __rmul__(self, other: Any) -> Tensor: ...
    def __ror__(self, other: Any) -> Tensor: ...
    def __rpow__(self, other: Any) -> Tensor: ...
    @overload
    def __rshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __rshift__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __rshift__(self, other: Any) -> Tensor: ...
    def __rsub__(self, other: Any) -> Tensor: ...
    def __rtruediv__(self, other: Any) -> Tensor: ...
    def __rxor__(self, other: Any) -> Tensor: ...
    def __setitem__(self, indices: Union[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], tuple[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], ...]], val: Union[Tensor, Number]) -> None: ...
    def __sub__(self, other: Any) -> Tensor: ...
    def __truediv__(self, other: Any) -> Tensor: ...
    @overload
    def __xor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __xor__(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def __xor__(self, other: Any) -> Tensor: ...
    def _addmm_activation(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, use_gelu: _bool = False) -> Tensor: ...
    def _autocast_to_full_precision(self, cuda_enabled: _bool, cpu_enabled: _bool) -> Tensor: ...
    def _autocast_to_reduced_precision(self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype) -> Tensor: ...
    def _coalesced_(self, coalesced: _bool) -> Tensor: ...
    def _conj(self) -> Tensor: ...
    def _conj_physical(self) -> Tensor: ...
    def _dimI(self) -> _int: ...
    def _dimV(self) -> _int: ...
    def _indices(self) -> Tensor: ...
    def _is_all_true(self) -> Tensor: ...
    def _is_any_true(self) -> Tensor: ...
    def _is_view(self) -> _bool: ...
    def _is_zerotensor(self) -> _bool: ...
    @staticmethod    
    def _make_subclass(cls: Type[S], data: Tensor, require_grad: _bool = False, dispatch_strides: _bool = False, dispatch_device: _bool = False, device_for_backend_keys: Optional[_device] = None) -> S: ...
    def _neg_view(self) -> Tensor: ...
    def _nested_tensor_size(self) -> Tensor: ...
    def _nested_tensor_storage_offsets(self) -> Tensor: ...
    def _nested_tensor_strides(self) -> Tensor: ...
    def _nnz(self) -> _int: ...
    def _sparse_mask_projection(self, mask: Tensor, accumulate_matches: _bool = False) -> Tensor: ...
    def _to_dense(self, dtype: Optional[_dtype] = None, masked_grad: Optional[_bool] = None) -> Tensor: ...
    @overload
    def _to_sparse(self, *, layout: Optional[_layout] = None, blocksize: Optional[Union[_int, _size]] = None, dense_dim: Optional[_int] = None) -> Tensor: ...
    @overload
    def _to_sparse(self, sparse_dim: _int) -> Tensor: ...
    def _to_sparse_bsc(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ...
    def _to_sparse_bsr(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ...
    def _to_sparse_csc(self, dense_dim: Optional[_int] = None) -> Tensor: ...
    def _to_sparse_csr(self, dense_dim: Optional[_int] = None) -> Tensor: ...
    def _values(self) -> Tensor: ...
    def abs(self) -> Tensor: ...
    def abs_(self) -> Tensor: ...
    def absolute(self) -> Tensor: ...
    def absolute_(self) -> Tensor: ...
    def acos(self) -> Tensor: ...
    def acos_(self) -> Tensor: ...
    def acosh(self) -> Tensor: ...
    def acosh_(self) -> Tensor: ...
    def add(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number] = 1, out: Optional[Tensor] = None) -> Tensor: ...
    def add_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number] = 1) -> Tensor: ...
    def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: ...
    def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: ...
    def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: ...
    def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: ...
    def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addmv(self, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def adjoint(self) -> Tensor: ...
    def align_as(self, other: Tensor) -> Tensor: ...
    @overload
    def align_to(self, order: Sequence[Union[str, ellipsis, None]], ellipsis_idx: _int) -> Tensor: ...
    @overload
    def align_to(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    @overload
    def all(self) -> Tensor: ...
    @overload
    def all(self, dim: Optional[_size] = None, keepdim: _bool = False) -> Tensor: ...
    @overload
    def all(self, dim: _int, keepdim: _bool = False) -> Tensor: ...
    @overload
    def all(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> Tensor: ...
    def allclose(self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> _bool: ...
    def amax(self, dim: Union[_int, _size] = (), keepdim: _bool = False) -> Tensor: ...
    def amin(self, dim: Union[_int, _size] = (), keepdim: _bool = False) -> Tensor: ...
    def aminmax(self, *, dim: Optional[_int] = None, keepdim: _bool = False) -> torch.return_types.aminmax: ...
    def angle(self) -> Tensor: ...
    @overload
    def any(self) -> Tensor: ...
    @overload
    def any(self, dim: Optional[_size] = None, keepdim: _bool = False) -> Tensor: ...
    @overload
    def any(self, dim: _int, keepdim: _bool = False) -> Tensor: ...
    @overload
    def any(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> Tensor: ...
    def apply_(self, callable: Callable) -> Tensor: ...
    def arccos(self) -> Tensor: ...
    def arccos_(self) -> Tensor: ...
    def arccosh(self) -> Tensor: ...
    def arccosh_(self) -> Tensor: ...
    def arcsin(self) -> Tensor: ...
    def arcsin_(self) -> Tensor: ...
    def arcsinh(self) -> Tensor: ...
    def arcsinh_(self) -> Tensor: ...
    def arctan(self) -> Tensor: ...
    def arctan2(self, other: Tensor) -> Tensor: ...
    def arctan2_(self, other: Tensor) -> Tensor: ...
    def arctan_(self) -> Tensor: ...
    def arctanh(self) -> Tensor: ...
    def arctanh_(self) -> Tensor: ...
    def argmax(self, dim: Optional[_int] = None, keepdim: _bool = False) -> Tensor: ...
    def argmin(self, dim: Optional[_int] = None, keepdim: _bool = False) -> Tensor: ...
    @overload
    def argsort(self, *, stable: _bool, dim: _int = -1, descending: _bool = False) -> Tensor: ...
    @overload
    def argsort(self, dim: _int = -1, descending: _bool = False) -> Tensor: ...
    @overload
    def argsort(self, dim: Union[str, ellipsis, None], descending: _bool = False) -> Tensor: ...
    def argwhere(self) -> Tensor: ...
    def as_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: ...
    def as_strided_(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: ...
    def as_strided_scatter(self, src: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: ...
    def as_subclass(self, cls: Type[S]) -> S: ...
    def asin(self) -> Tensor: ...
    def asin_(self) -> Tensor: ...
    def asinh(self) -> Tensor: ...
    def asinh_(self) -> Tensor: ...
    def atan(self) -> Tensor: ...
    def atan2(self, other: Tensor) -> Tensor: ...
    def atan2_(self, other: Tensor) -> Tensor: ...
    def atan_(self) -> Tensor: ...
    def atanh(self) -> Tensor: ...
    def atanh_(self) -> Tensor: ...
    def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def bernoulli(self, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def bernoulli(self, p: _float, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: Tensor, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: _float = 0.5, *, generator: Optional[Generator] = None) -> Tensor: ...
    def bfloat16(self) -> Tensor: ...
    def bincount(self, weights: Optional[Tensor] = None, minlength: _int = 0) -> Tensor: ...
    @overload
    def bitwise_and(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_and(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_and_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_and_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_left_shift(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_left_shift(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_left_shift_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_left_shift_(self, other: Union[Number, _complex]) -> Tensor: ...
    def bitwise_not(self) -> Tensor: ...
    def bitwise_not_(self) -> Tensor: ...
    @overload
    def bitwise_or(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_or(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_or_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_or_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_right_shift(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_right_shift(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_right_shift_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_right_shift_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Union[Number, _complex]) -> Tensor: ...
    def bmm(self, mat2: Tensor) -> Tensor: ...
    def bool(self) -> Tensor: ...
    @overload
    def broadcast_to(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def broadcast_to(self, *size: _int) -> Tensor: ...
    def byte(self) -> Tensor: ...
    def cauchy_(self, median: _float = 0, sigma: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: ...
    def ccol_indices(self) -> Tensor: ...
    def ceil(self) -> Tensor: ...
    def ceil_(self) -> Tensor: ...
    def chalf(self, *, memory_format: Optional[memory_format] = None) -> Tensor: ...
    def char(self) -> Tensor: ...
    def cholesky(self, upper: _bool = False) -> Tensor: ...
    def cholesky_inverse(self, upper: _bool = False) -> Tensor: ...
    def cholesky_solve(self, input2: Tensor, upper: _bool = False) -> Tensor: ...
    def chunk(self, chunks: _int, dim: _int = 0) -> List[Tensor]: ...
    @overload
    def clamp(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ...
    @overload
    def clamp(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ...
    @overload
    def clamp_(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ...
    @overload
    def clamp_(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ...
    @overload
    def clamp_max(self, max: Tensor) -> Tensor: ...
    @overload
    def clamp_max(self, max: Union[Number, _complex]) -> Tensor: ...
    @overload
    def clamp_max_(self, max: Tensor) -> Tensor: ...
    @overload
    def clamp_max_(self, max: Union[Number, _complex]) -> Tensor: ...
    @overload
    def clamp_min(self, min: Tensor) -> Tensor: ...
    @overload
    def clamp_min(self, min: Union[Number, _complex]) -> Tensor: ...
    @overload
    def clamp_min_(self, min: Tensor) -> Tensor: ...
    @overload
    def clamp_min_(self, min: Union[Number, _complex]) -> Tensor: ...
    @overload
    def clip(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ...
    @overload
    def clip(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ...
    @overload
    def clip_(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ...
    @overload
    def clip_(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ...
    def clone(self, *, memory_format: Optional[memory_format] = None) -> Tensor: ...
    def coalesce(self) -> Tensor: ...
    def col_indices(self) -> Tensor: ...
    def conj(self) -> Tensor: ...
    def conj_physical(self) -> Tensor: ...
    def conj_physical_(self) -> Tensor: ...
    def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ...
    def copy_(self, src: Tensor, non_blocking: _bool = False) -> Tensor: ...
    @overload
    def copysign(self, other: Tensor) -> Tensor: ...
    @overload
    def copysign(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def copysign_(self, other: Tensor) -> Tensor: ...
    @overload
    def copysign_(self, other: Union[Number, _complex]) -> Tensor: ...
    def corrcoef(self) -> Tensor: ...
    def cos(self) -> Tensor: ...
    def cos_(self) -> Tensor: ...
    def cosh(self) -> Tensor: ...
    def cosh_(self) -> Tensor: ...
    @overload
    def count_nonzero(self, dim: Optional[_int] = None) -> Tensor: ...
    @overload
    def count_nonzero(self, dim: _size) -> Tensor: ...
    @overload
    def count_nonzero(self, *dim: _int) -> Tensor: ...
    def cov(self, *, correction: _int = 1, fweights: Optional[Tensor] = None, aweights: Optional[Tensor] = None) -> Tensor: ...
    def cpu(self) -> Tensor: ...
    def cross(self, other: Tensor, dim: Optional[_int] = None) -> Tensor: ...
    def crow_indices(self) -> Tensor: ...
    def cuda(self, device: Optional[Union[_device, _int, str]] = None, non_blocking: _bool = False) -> Tensor: ...
    @overload
    def cummax(self, dim: _int) -> torch.return_types.cummax: ...
    @overload
    def cummax(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummax: ...
    @overload
    def cummin(self, dim: _int) -> torch.return_types.cummin: ...
    @overload
    def cummin(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummin: ...
    @overload
    def cumprod(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumprod(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumprod_(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumprod_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumsum(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumsum(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumsum_(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def cumsum_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    def data_ptr(self) -> _int: ...
    def deg2rad(self) -> Tensor: ...
    def deg2rad_(self) -> Tensor: ...
    def dense_dim(self) -> _int: ...
    def dequantize(self) -> Tensor: ...
    def det(self) -> Tensor: ...
    def detach(self) -> Tensor: ...
    def detach_(self) -> Tensor: ...
    def diag(self, diagonal: _int = 0) -> Tensor: ...
    def diag_embed(self, offset: _int = 0, dim1: _int = -2, dim2: _int = -1) -> Tensor: ...
    def diagflat(self, offset: _int = 0) -> Tensor: ...
    @overload
    def diagonal(self, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int = 0) -> Tensor: ...
    @overload
    def diagonal(self, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: ...
    def diagonal_scatter(self, src: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: ...
    def diff(self, n: _int = 1, dim: _int = -1, prepend: Optional[Tensor] = None, append: Optional[Tensor] = None) -> Tensor: ...
    def digamma(self) -> Tensor: ...
    def digamma_(self) -> Tensor: ...
    def dim(self) -> _int: ...
    def dist(self, other: Tensor, p: Union[Number, _complex] = 2) -> Tensor: ...
    def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
    def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
    @overload
    def divide(self, other: Tensor) -> Tensor: ...
    @overload
    def divide(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide(self, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def divide_(self, other: Tensor) -> Tensor: ...
    @overload
    def divide_(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide_(self, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide_(self, other: Union[Number, _complex]) -> Tensor: ...
    def dot(self, tensor: Tensor) -> Tensor: ...
    def double(self) -> Tensor: ...
    @overload
    def dsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def dsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def dsplit(self, *indices: _int) -> List[Tensor]: ...
    def element_size(self) -> _int: ...
    @overload
    def eq(self, other: Tensor) -> Tensor: ...
    @overload
    def eq(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def eq_(self, other: Tensor) -> Tensor: ...
    @overload
    def eq_(self, other: Union[Number, _complex]) -> Tensor: ...
    def equal(self, other: Tensor) -> _bool: ...
    def erf(self) -> Tensor: ...
    def erf_(self) -> Tensor: ...
    def erfc(self) -> Tensor: ...
    def erfc_(self) -> Tensor: ...
    def erfinv(self) -> Tensor: ...
    def erfinv_(self) -> Tensor: ...
    def exp(self) -> Tensor: ...
    def exp2(self) -> Tensor: ...
    def exp2_(self) -> Tensor: ...
    def exp_(self) -> Tensor: ...
    @overload
    def expand(self, size: Sequence[Union[_int, SymInt]], *, implicit: _bool = False) -> Tensor: ...
    @overload
    def expand(self, *size: _int, implicit: _bool = False) -> Tensor: ...
    def expand_as(self, other: Tensor) -> Tensor: ...
    def expm1(self) -> Tensor: ...
    def expm1_(self) -> Tensor: ...
    def exponential_(self, lambd: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def fill_(self, value: Tensor) -> Tensor: ...
    @overload
    def fill_(self, value: Union[Number, _complex]) -> Tensor: ...
    def fill_diagonal_(self, fill_value: Union[Number, _complex], wrap: _bool = False) -> Tensor: ...
    def fix(self) -> Tensor: ...
    def fix_(self) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int = 0, end_dim: _int = -1) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flatten(self, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flatten(self, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flip(self, dims: _size) -> Tensor: ...
    @overload
    def flip(self, *dims: _int) -> Tensor: ...
    def fliplr(self) -> Tensor: ...
    def flipud(self) -> Tensor: ...
    def float(self) -> Tensor: ...
    @overload
    def float_power(self, exponent: Tensor) -> Tensor: ...
    @overload
    def float_power(self, exponent: Union[Number, _complex]) -> Tensor: ...
    @overload
    def float_power_(self, exponent: Tensor) -> Tensor: ...
    @overload
    def float_power_(self, exponent: Union[Number, _complex]) -> Tensor: ...
    def floor(self) -> Tensor: ...
    def floor_(self) -> Tensor: ...
    def floor_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: ...
    def floor_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
    def fmax(self, other: Tensor) -> Tensor: ...
    def fmin(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def fmod_(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod_(self, other: Union[Number, _complex]) -> Tensor: ...
    def frac(self) -> Tensor: ...
    def frac_(self) -> Tensor: ...
    def frexp(self) -> torch.return_types.frexp: ...
    @overload
    def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool = False) -> Tensor: ...
    @overload
    def gather(self, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool = False) -> Tensor: ...
    def gcd(self, other: Tensor) -> Tensor: ...
    def gcd_(self, other: Tensor) -> Tensor: ...
    @overload
    def ge(self, other: Tensor) -> Tensor: ...
    @overload
    def ge(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def ge_(self, other: Tensor) -> Tensor: ...
    @overload
    def ge_(self, other: Union[Number, _complex]) -> Tensor: ...
    def geometric_(self, p: _float, *, generator: Optional[Generator] = None) -> Tensor: ...
    def geqrf(self) -> torch.return_types.geqrf: ...
    def ger(self, vec2: Tensor) -> Tensor: ...
    def get_device(self) -> _int: ...
    @overload
    def greater(self, other: Tensor) -> Tensor: ...
    @overload
    def greater(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def greater_(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def greater_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_equal(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def greater_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_equal_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def gt(self, other: Tensor) -> Tensor: ...
    @overload
    def gt(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def gt_(self, other: Tensor) -> Tensor: ...
    @overload
    def gt_(self, other: Union[Number, _complex]) -> Tensor: ...
    def half(self) -> Tensor: ...
    def hardshrink(self, lambd: Union[Number, _complex] = 0.5) -> Tensor: ...
    def has_names(self) -> _bool: ...
    def heaviside(self, values: Tensor) -> Tensor: ...
    def heaviside_(self, values: Tensor) -> Tensor: ...
    def histc(self, bins: _int = 100, min: Union[Number, _complex] = 0, max: Union[Number, _complex] = 0) -> Tensor: ...
    @overload
    def histogram(self, bins: Tensor, *, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogram: ...
    @overload
    def histogram(self, bins: _int = 100, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogram: ...
    @overload
    def hsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def hsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def hsplit(self, *indices: _int) -> List[Tensor]: ...
    def hypot(self, other: Tensor) -> Tensor: ...
    def hypot_(self, other: Tensor) -> Tensor: ...
    def i0(self) -> Tensor: ...
    def i0_(self) -> Tensor: ...
    def igamma(self, other: Tensor) -> Tensor: ...
    def igamma_(self, other: Tensor) -> Tensor: ...
    def igammac(self, other: Tensor) -> Tensor: ...
    def igammac_(self, other: Tensor) -> Tensor: ...
    @overload
    def index_add(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def index_add(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    def index_add_(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ...
    def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ...
    def index_reduce(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: ...
    def index_reduce_(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: ...
    @overload
    def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
    @overload
    def index_select(self, dim: Union[str, ellipsis, None], index: Tensor) -> Tensor: ...
    def indices(self) -> Tensor: ...
    def inner(self, other: Tensor) -> Tensor: ...
    def int(self) -> Tensor: ...
    def int_repr(self) -> Tensor: ...
    def inverse(self) -> Tensor: ...
    def is_coalesced(self) -> _bool: ...
    def is_complex(self) -> _bool: ...
    def is_conj(self) -> _bool: ...
    def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: ...
    is_cpu: _bool
    is_cuda: _bool
    def is_distributed(self) -> _bool: ...
    def is_floating_point(self) -> _bool: ...
    def is_inference(self) -> _bool: ...
    is_ipu: _bool
    is_leaf: _bool
    is_meta: _bool
    is_mkldnn: _bool
    is_mps: _bool
    is_mtia: _bool
    def is_neg(self) -> _bool: ...
    is_nested: _bool
    def is_nonzero(self) -> _bool: ...
    is_ort: _bool
    def is_pinned(self, device: Optional[Optional[DeviceLikeType]] = None) -> _bool: ...
    is_quantized: _bool
    def is_same_size(self, other: Tensor) -> _bool: ...
    def is_set_to(self, tensor: Tensor) -> _bool: ...
    def is_signed(self) -> _bool: ...
    is_sparse: _bool
    is_sparse_csr: _bool
    is_vulkan: _bool
    def isclose(self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> Tensor: ...
    def isfinite(self) -> Tensor: ...
    def isinf(self) -> Tensor: ...
    def isnan(self) -> Tensor: ...
    def isneginf(self) -> Tensor: ...
    def isposinf(self) -> Tensor: ...
    def isreal(self) -> Tensor: ...
    def istft(self, n_fft: _int, hop_length: Optional[_int] = None, win_length: Optional[_int] = None, window: Optional[Tensor] = None, center: _bool = True, normalized: _bool = False, onesided: Optional[_bool] = None, length: Optional[_int] = None, return_complex: _bool = False) -> Tensor: ...
    def item(self) -> Number: ...
    def kron(self, other: Tensor) -> Tensor: ...
    @overload
    def kthvalue(self, k: _int, dim: _int = -1, keepdim: _bool = False) -> torch.return_types.kthvalue: ...
    @overload
    def kthvalue(self, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.kthvalue: ...
    def lcm(self, other: Tensor) -> Tensor: ...
    def lcm_(self, other: Tensor) -> Tensor: ...
    def ldexp(self, other: Tensor) -> Tensor: ...
    def ldexp_(self, other: Tensor) -> Tensor: ...
    @overload
    def le(self, other: Tensor) -> Tensor: ...
    @overload
    def le(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def le_(self, other: Tensor) -> Tensor: ...
    @overload
    def le_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Union[Number, _complex]) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Union[Number, _complex]) -> Tensor: ...
    @overload
    def less(self, other: Tensor) -> Tensor: ...
    @overload
    def less(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def less_(self, other: Tensor) -> Tensor: ...
    @overload
    def less_(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def less_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def less_equal(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def less_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def less_equal_(self, other: Union[Number, _complex]) -> Tensor: ...
    def lgamma(self) -> Tensor: ...
    def lgamma_(self) -> Tensor: ...
    def log(self) -> Tensor: ...
    def log10(self) -> Tensor: ...
    def log10_(self) -> Tensor: ...
    def log1p(self) -> Tensor: ...
    def log1p_(self) -> Tensor: ...
    def log2(self) -> Tensor: ...
    def log2_(self) -> Tensor: ...
    def log_(self) -> Tensor: ...
    def log_normal_(self, mean: _float = 1, std: _float = 2, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: _int, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    def logaddexp(self, other: Tensor) -> Tensor: ...
    def logaddexp2(self, other: Tensor) -> Tensor: ...
    @overload
    def logcumsumexp(self, dim: _int) -> Tensor: ...
    @overload
    def logcumsumexp(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    def logdet(self) -> Tensor: ...
    def logical_and(self, other: Tensor) -> Tensor: ...
    def logical_and_(self, other: Tensor) -> Tensor: ...
    def logical_not(self) -> Tensor: ...
    def logical_not_(self) -> Tensor: ...
    def logical_or(self, other: Tensor) -> Tensor: ...
    def logical_or_(self, other: Tensor) -> Tensor: ...
    def logical_xor(self, other: Tensor) -> Tensor: ...
    def logical_xor_(self, other: Tensor) -> Tensor: ...
    def logit(self, eps: Optional[_float] = None) -> Tensor: ...
    def logit_(self, eps: Optional[_float] = None) -> Tensor: ...
    @overload
    def logsumexp(self, dim: Union[_int, _size], keepdim: _bool = False) -> Tensor: ...
    @overload
    def logsumexp(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False) -> Tensor: ...
    def long(self) -> Tensor: ...
    @overload
    def lt(self, other: Tensor) -> Tensor: ...
    @overload
    def lt(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def lt_(self, other: Tensor) -> Tensor: ...
    @overload
    def lt_(self, other: Union[Number, _complex]) -> Tensor: ...
    def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
    def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ...
    def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_select(self, mask: Tensor) -> Tensor: ...
    def matmul(self, other: Tensor) -> Tensor: ...
    def matrix_exp(self) -> Tensor: ...
    def matrix_power(self, n: _int) -> Tensor: ...
    @overload
    def max(self) -> Tensor: ...
    @overload
    def max(self, other: Tensor) -> Tensor: ...
    @overload
    def max(self, dim: _int, keepdim: _bool = False) -> torch.return_types.max: ...
    @overload
    def max(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.max: ...
    def maximum(self, other: Tensor) -> Tensor: ...
    @overload
    def mean(self, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def mean(self, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def mean(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def median(self) -> Tensor: ...
    @overload
    def median(self, dim: _int, keepdim: _bool = False) -> torch.return_types.median: ...
    @overload
    def median(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.median: ...
    @overload
    def min(self) -> Tensor: ...
    @overload
    def min(self, other: Tensor) -> Tensor: ...
    @overload
    def min(self, dim: _int, keepdim: _bool = False) -> torch.return_types.min: ...
    @overload
    def min(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.min: ...
    def minimum(self, other: Tensor) -> Tensor: ...
    def mm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def mode(self, dim: _int = -1, keepdim: _bool = False) -> torch.return_types.mode: ...
    @overload
    def mode(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.mode: ...
    @overload
    def moveaxis(self, source: _int, destination: _int) -> Tensor: ...
    @overload
    def moveaxis(self, source: _size, destination: _size) -> Tensor: ...
    @overload
    def movedim(self, source: _int, destination: _int) -> Tensor: ...
    @overload
    def movedim(self, source: _size, destination: _size) -> Tensor: ...
    def msort(self) -> Tensor: ...
    def mul(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: ...
    def mul_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
    def multinomial(self, num_samples: _int, replacement: _bool = False, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def multiply(self, other: Tensor) -> Tensor: ...
    @overload
    def multiply(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def multiply_(self, other: Tensor) -> Tensor: ...
    @overload
    def multiply_(self, other: Union[Number, _complex]) -> Tensor: ...
    def mv(self, vec: Tensor) -> Tensor: ...
    def mvlgamma(self, p: _int) -> Tensor: ...
    def mvlgamma_(self, p: _int) -> Tensor: ...
    def nan_to_num(self, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: ...
    def nan_to_num_(self, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: ...
    def nanmean(self, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def nanmedian(self) -> Tensor: ...
    @overload
    def nanmedian(self, dim: _int, keepdim: _bool = False) -> torch.return_types.nanmedian: ...
    @overload
    def nanmedian(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.nanmedian: ...
    @overload
    def nanquantile(self, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: ...
    @overload
    def nanquantile(self, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: ...
    def nansum(self, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def narrow(self, dim: _int, start: Tensor, length: Union[_int, SymInt]) -> Tensor: ...
    @overload
    def narrow(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: ...
    def narrow_copy(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: ...
    def ndimension(self) -> _int: ...
    @overload
    def ne(self, other: Tensor) -> Tensor: ...
    @overload
    def ne(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def ne_(self, other: Tensor) -> Tensor: ...
    @overload
    def ne_(self, other: Union[Number, _complex]) -> Tensor: ...
    def neg(self) -> Tensor: ...
    def neg_(self) -> Tensor: ...
    def negative(self) -> Tensor: ...
    def negative_(self) -> Tensor: ...
    def nelement(self) -> _int: ...
    @overload
    def new(self, *args: Any, device: Optional[DeviceLikeType] = None) -> Tensor: ...
    @overload
    def new(self, storage: Storage) -> Tensor: ...
    @overload
    def new(self, other: Tensor) -> Tensor: ...
    @overload
    def new(self, size: _size, *, device: Optional[DeviceLikeType] = None) -> Tensor: ...
    @overload
    def new_empty(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    @overload
    def new_empty(self, *size: _int, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    def new_empty_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    def new_full(self, size: Sequence[Union[_int, SymInt]], fill_value: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    @overload
    def new_ones(self, size: _size, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: ...
    @overload
    def new_ones(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    @overload
    def new_ones(self, *size: _int, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    def new_tensor(self, data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: ...
    @overload
    def new_zeros(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    @overload
    def new_zeros(self, *size: _int, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
    def nextafter(self, other: Tensor) -> Tensor: ...
    def nextafter_(self, other: Tensor) -> Tensor: ...
    @overload
    def nonzero(self, *, as_tuple: Literal[False] = False) -> Tensor: ...
    @overload
    def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...
    def nonzero_static(self, *, size: _int, fill_value: _int = -1) -> Tensor: ...
    def normal_(self, mean: _float = 0, std: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def not_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def not_equal(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def not_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def not_equal_(self, other: Union[Number, _complex]) -> Tensor: ...
    def numel(self) -> _int: ...
    def numpy(self, *, force: _bool = False) -> Any: ...
    def orgqr(self, input2: Tensor) -> Tensor: ...
    def ormqr(self, input2: Tensor, input3: Tensor, left: _bool = True, transpose: _bool = False) -> Tensor: ...
    def outer(self, vec2: Tensor) -> Tensor: ...
    @overload
    def permute(self, dims: _size) -> Tensor: ...
    @overload
    def permute(self, *dims: _int) -> Tensor: ...
    def pin_memory(self, device: Optional[Optional[DeviceLikeType]] = None) -> Tensor: ...
    def pinverse(self, rcond: _float = 1e-15) -> Tensor: ...
    def polygamma(self, n: _int) -> Tensor: ...
    def polygamma_(self, n: _int) -> Tensor: ...
    def positive(self) -> Tensor: ...
    @overload
    def pow(self, exponent: Tensor) -> Tensor: ...
    @overload
    def pow(self, exponent: Union[Number, _complex]) -> Tensor: ...
    @overload
    def pow_(self, exponent: Tensor) -> Tensor: ...
    @overload
    def pow_(self, exponent: Union[Number, _complex]) -> Tensor: ...
    def prelu(self, weight: Tensor) -> Tensor: ...
    @overload
    def prod(self, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def prod(self, dim: _int, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def prod(self, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    def put(self, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: ...
    def put_(self, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: ...
    def q_per_channel_axis(self) -> _int: ...
    def q_per_channel_scales(self) -> Tensor: ...
    def q_per_channel_zero_points(self) -> Tensor: ...
    def q_scale(self) -> _float: ...
    def q_zero_point(self) -> _int: ...
    def qr(self, some: _bool = True) -> torch.return_types.qr: ...
    def qscheme(self) -> _qscheme: ...
    @overload
    def quantile(self, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: ...
    @overload
    def quantile(self, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: ...
    def rad2deg(self) -> Tensor: ...
    def rad2deg_(self) -> Tensor: ...
    @overload
    def random_(self, *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def random_(self, from_: _int, to: Optional[_int], *, generator: Optional[Generator] = None) -> Tensor: ...
    @overload
    def random_(self, to: _int, *, generator: Optional[Generator] = None) -> Tensor: ...
    def ravel(self) -> Tensor: ...
    def reciprocal(self) -> Tensor: ...
    def reciprocal_(self) -> Tensor: ...
    def record_stream(self, s: Stream) -> None: ...
    def refine_names(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    def relu(self) -> Tensor: ...
    def relu_(self) -> Tensor: ...
    @overload
    def remainder(self, other: Tensor) -> Tensor: ...
    @overload
    def remainder(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def remainder_(self, other: Tensor) -> Tensor: ...
    @overload
    def remainder_(self, other: Union[Number, _complex]) -> Tensor: ...
    def rename(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
    def rename_(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
    def renorm(self, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex]) -> Tensor: ...
    def renorm_(self, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex]) -> Tensor: ...
    @overload
    def repeat(self, repeats: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def repeat(self, *repeats: _int) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: Tensor, dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: Union[_int, SymInt], dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: ...
    def requires_grad_(self, mode: _bool = True) -> Tensor: ...
    @overload
    def reshape(self, shape: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def reshape(self, *shape: _int) -> Tensor: ...
    def reshape_as(self, other: Tensor) -> Tensor: ...
    @overload
    def resize_(self, size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format] = None) -> Tensor: ...
    @overload
    def resize_(self, *size: _int, memory_format: Optional[memory_format] = None) -> Tensor: ...
    def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: ...
    def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ...
    def resolve_conj(self) -> Tensor: ...
    def resolve_neg(self) -> Tensor: ...
    def retain_grad(self) -> None: ...
    def roll(self, shifts: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], dims: Union[_int, _size] = ()) -> Tensor: ...
    def rot90(self, k: _int = 1, dims: _size = (0,1)) -> Tensor: ...
    @overload
    def round(self) -> Tensor: ...
    @overload
    def round(self, *, decimals: _int) -> Tensor: ...
    @overload
    def round_(self) -> Tensor: ...
    @overload
    def round_(self, *, decimals: _int) -> Tensor: ...
    def row_indices(self) -> Tensor: ...
    def rsqrt(self) -> Tensor: ...
    def rsqrt_(self) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ...
    @overload
    def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_add(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
    def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    def scatter_reduce(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: ...
    def scatter_reduce_(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: ...
    @overload
    def select(self, dim: _int, index: Union[_int, SymInt]) -> Tensor: ...
    @overload
    def select(self, dim: Union[str, ellipsis, None], index: _int) -> Tensor: ...
    def select_scatter(self, src: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: ...
    @overload
    def set_(self, storage: Union[Storage, TypedStorage, UntypedStorage], offset: _int, size: _size, stride: _size) -> Tensor: ...
    @overload
    def set_(self, storage: Union[Storage, TypedStorage, UntypedStorage]) -> Tensor: ...
    def sgn(self) -> Tensor: ...
    def sgn_(self) -> Tensor: ...
    def short(self) -> Tensor: ...
    def sigmoid(self) -> Tensor: ...
    def sigmoid_(self) -> Tensor: ...
    def sign(self) -> Tensor: ...
    def sign_(self) -> Tensor: ...
    def signbit(self) -> Tensor: ...
    def sin(self) -> Tensor: ...
    def sin_(self) -> Tensor: ...
    def sinc(self) -> Tensor: ...
    def sinc_(self) -> Tensor: ...
    def sinh(self) -> Tensor: ...
    def sinh_(self) -> Tensor: ...
    @overload
    def size(self, dim: None = None) -> Size: ...
    @overload
    def size(self, dim: _int) -> _int: ...
    def slice_scatter(self, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1) -> Tensor: ...
    def slogdet(self) -> torch.return_types.slogdet: ...
    def smm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def softmax(self, dim: _int, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def sort(self, *, stable: Optional[_bool], dim: _int = -1, descending: _bool = False) -> torch.return_types.sort: ...
    @overload
    def sort(self, dim: _int = -1, descending: _bool = False) -> torch.return_types.sort: ...
    @overload
    def sort(self, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool = False) -> torch.return_types.sort: ...
    @overload
    def sort(self, dim: Union[str, ellipsis, None], descending: _bool = False) -> torch.return_types.sort: ...
    def sparse_dim(self) -> _int: ...
    def sparse_mask(self, mask: Tensor) -> Tensor: ...
    def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    @overload
    def split(self, split_size: _int, dim: _int = 0) -> Sequence[Tensor]: ...
    @overload
    def split(self, split_size: Tuple[_int, ...], dim: _int = 0) -> Sequence[Tensor]: ...
    def split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> List[Tensor]: ...
    def sqrt(self) -> Tensor: ...
    def sqrt_(self) -> Tensor: ...
    def square(self) -> Tensor: ...
    def square_(self) -> Tensor: ...
    @overload
    def squeeze(self) -> Tensor: ...
    @overload
    def squeeze(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze(self, dim: _size) -> Tensor: ...
    @overload
    def squeeze(self, *dim: _int) -> Tensor: ...
    @overload
    def squeeze(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def squeeze_(self) -> Tensor: ...
    @overload
    def squeeze_(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze_(self, dim: _size) -> Tensor: ...
    @overload
    def squeeze_(self, *dim: _int) -> Tensor: ...
    @overload
    def squeeze_(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def std(self, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: ...
    @overload
    def std(self, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: ...
    @overload
    def std(self, unbiased: _bool = True) -> Tensor: ...
    @overload
    def std(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: ...
    @overload
    def std(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: ...
    def untyped_storage(self) -> UntypedStorage: ...
    def storage_offset(self) -> _int: ...
    def storage_type(self) -> Storage: ...
    @overload
    def stride(self, dim: None = None) -> Tuple[_int, ...]: ...
    @overload
    def stride(self, dim: _int) -> _int: ...
    def sub(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number] = 1, out: Optional[Tensor] = None) -> Tensor: ...
    def sub_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha: Optional[Number] = 1) -> Tensor: ...
    @overload
    def subtract(self, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def subtract(self, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def subtract_(self, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def subtract_(self, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ...
    @overload
    def sum(self, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def sum(self, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def sum(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ...
    @overload
    def sum_to_size(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def sum_to_size(self, *size: _int) -> Tensor: ...
    def svd(self, some: _bool = True, compute_uv: _bool = True) -> torch.return_types.svd: ...
    def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: ...
    def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: ...
    def swapdims(self, dim0: _int, dim1: _int) -> Tensor: ...
    def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: ...
    def t(self) -> Tensor: ...
    def t_(self) -> Tensor: ...
    def take(self, index: Tensor) -> Tensor: ...
    def take_along_dim(self, indices: Tensor, dim: Optional[_int] = None) -> Tensor: ...
    def tan(self) -> Tensor: ...
    def tan_(self) -> Tensor: ...
    def tanh(self) -> Tensor: ...
    def tanh_(self) -> Tensor: ...
    @overload
    def tensor_split(self, indices: Sequence[Union[_int, SymInt]], dim: _int = 0) -> List[Tensor]: ...
    @overload
    def tensor_split(self, tensor_indices_or_sections: Tensor, dim: _int = 0) -> List[Tensor]: ...
    @overload
    def tensor_split(self, sections: Union[_int, SymInt], dim: _int = 0) -> List[Tensor]: ...
    @overload
    def tile(self, dims: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def tile(self, *dims: _int) -> Tensor: ...
    @overload
    def to(self, dtype: _dtype, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: ...
    @overload
    def to(self, device: Optional[DeviceLikeType] = None, dtype: Optional[_dtype] = None, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: ...
    @overload
    def to(self, other: Tensor, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: ...
    def to_dense(self, dtype: Optional[_dtype] = None, *, masked_grad: Optional[_bool] = None) -> Tensor: ...
    def to_mkldnn(self, dtype: Optional[_dtype] = None) -> Tensor: ...
    def to_padded_tensor(self, padding: _float, output_size: Optional[Sequence[Union[_int, SymInt]]] = None) -> Tensor: ...
    @overload
    def to_sparse(self, *, layout: Optional[_layout] = None, blocksize: Optional[Union[_int, _size]] = None, dense_dim: Optional[_int] = None) -> Tensor: ...
    @overload
    def to_sparse(self, sparse_dim: _int) -> Tensor: ...
    def to_sparse_bsc(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ...
    def to_sparse_bsr(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ...
    def to_sparse_csc(self, dense_dim: Optional[_int] = None) -> Tensor: ...
    def to_sparse_csr(self, dense_dim: Optional[_int] = None) -> Tensor: ...
    def tolist(self) -> List: ...
    def topk(self, k: Union[_int, SymInt], dim: _int = -1, largest: _bool = True, sorted: _bool = True) -> torch.return_types.topk: ...
    def trace(self) -> Tensor: ...
    @overload
    def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
    @overload
    def transpose(self, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: ...
    def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
    def triangular_solve(self, A: Tensor, upper: _bool = True, transpose: _bool = False, unitriangular: _bool = False) -> torch.return_types.triangular_solve: ...
    def tril(self, diagonal: _int = 0) -> Tensor: ...
    def tril_(self, diagonal: _int = 0) -> Tensor: ...
    def triu(self, diagonal: _int = 0) -> Tensor: ...
    def triu_(self, diagonal: _int = 0) -> Tensor: ...
    def true_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: ...
    def true_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: ...
    def trunc(self) -> Tensor: ...
    def trunc_(self) -> Tensor: ...
    @overload
    def type(self, dtype: None = None, non_blocking: _bool = False) -> str: ...
    @overload
    def type(self, dtype: Union[str, _dtype], non_blocking: _bool = False) -> Tensor: ...
    def type_as(self, other: Tensor) -> Tensor: ...
    @overload
    def unbind(self, dim: _int = 0) -> List[Tensor]: ...
    @overload
    def unbind(self, dim: Union[str, ellipsis, None]) -> List[Tensor]: ...
    @overload
    def unflatten(self, dim: Union[str, ellipsis, None], sizes: Sequence[Union[_int, SymInt]], names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    @overload
    def unflatten(self, dim: _int, sizes: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
    def uniform_(self, from_: _float = 0, to: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: ...
    def unsafe_chunk(self, chunks: _int, dim: _int = 0) -> List[Tensor]: ...
    def unsafe_split(self, split_size: Union[_int, SymInt], dim: _int = 0) -> List[Tensor]: ...
    def unsafe_split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> List[Tensor]: ...
    def unsqueeze(self, dim: _int) -> Tensor: ...
    def unsqueeze_(self, dim: _int) -> Tensor: ...
    def values(self) -> Tensor: ...
    @overload
    def var(self, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: ...
    @overload
    def var(self, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: ...
    @overload
    def var(self, unbiased: _bool = True) -> Tensor: ...
    @overload
    def var(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: ...
    @overload
    def var(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: ...
    def vdot(self, other: Tensor) -> Tensor: ...
    @overload
    def view(self, dtype: _dtype) -> Tensor: ...
    @overload
    def view(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: ...
    @overload
    def view(self, *size: _int) -> Tensor: ...
    def view_as(self, other: Tensor) -> Tensor: ...
    @overload
    def vsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def vsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def vsplit(self, *indices: _int) -> List[Tensor]: ...
    @overload
    def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
    @overload
    def where(self, condition: Tensor, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def xlogy(self, other: Tensor) -> Tensor: ...
    @overload
    def xlogy(self, other: Union[Number, _complex]) -> Tensor: ...
    @overload
    def xlogy_(self, other: Tensor) -> Tensor: ...
    @overload
    def xlogy_(self, other: Union[Number, _complex]) -> Tensor: ...
    def zero_(self) -> Tensor: ...

_TensorBase = TensorBase

# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...

# Defined in torch/csrc/mps/Module.cpp
def _mps_deviceSynchronize() -> None: ...
def _mps_get_default_generator() -> Generator: ...
def _mps_emptyCache() -> None: ...
def _mps_setMemoryFraction(fraction: _float) -> None: ...
def _mps_currentAllocatedMemory() -> _int: ...
def _mps_driverAllocatedMemory() -> _int: ...
def _mps_is_available() -> _bool: ...
def _mps_is_on_macos_13_or_newer(minor: _int) -> _bool: ...
def _mps_profilerStartTrace(mode: str, wait_until_completed: _bool) -> None: ...
def _mps_profilerStopTrace() -> None: ...
def _mps_acquireEvent(enable_timing: _bool) -> _int: ...
def _mps_releaseEvent(event_id: _int) -> None: ...
def _mps_recordEvent(event_id: _int) -> None: ...
def _mps_waitForEvent(event_id: _int) -> None: ...
def _mps_synchronizeEvent(event_id: _int) -> None: ...
def _mps_queryEvent(event_id: _int) -> _bool: ...
def _mps_elapsedTimeOfEvents(start_event_id: _int, end_event_id: _int) -> _float: ...


# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> Tuple: ...
def _cuda_getCurrentRawStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> Tuple: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_clearCublasWorkspaces() -> None: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_exchangeDevice(device: _int) -> _int: ...
def _cuda_maybeExchangeDevice(device: _int) -> _int: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> Optional[str]: ...
def _cuda_init() -> None: ...
def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ...
def _cuda_beginAllocateCurrentStreamToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_endAllocateCurrentStreamToPool(device: _int) -> None: ...
def _cuda_releasePool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_checkPoolLiveAllocations(device: _int, mempool_id: Tuple[_int, _int], expected_live_allocations: Set) -> _bool: ...
def _cuda_setCheckpointPoolState(device: _int, state: _cuda_CUDAAllocator_AllocatorState,  stale_storages: List[_int], storages_to_add_deleters_to: List[_int]) -> None: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_memorySnapshot() -> Dict[str, Any]: ...
def _cuda_record_memory_history_legacy(
    enabled: _bool,
    record_context: _bool,
    record_context_cpp: _bool,
    alloc_trace_max_entries: _int,
    alloc_trace_record_context: _bool,
) -> None: ...
def _cuda_record_memory_history(
    enabled: Optional[str],
    context: Optional[str],
    stacks: str,
    max_entries
) -> None: ...
def _cuda_isHistoryEnabled() -> _bool: ...

def _cuda_getAllocatorBackend() -> str: ...
class _cuda_CUDAAllocator_AllocatorState:
    pass
def _cuda_getCheckpointState(device: _int, mempool: Tuple[_int, _int]) -> _cuda_CUDAAllocator_AllocatorState: ...
def _set_cached_tensors_enabled(enabled: _bool) -> None: ...
def _add_cached_tensor(t: Tensor) -> None: ...
def _remove_cached_tensor(t: Tensor) -> None: ...
def _construct_CUDA_Tensor_From_Storage_And_Metadata(metadata: dict, storage: Storage) -> Tensor: ...
def _storage_Use_Count(storage_ptr: _int) -> _int: ...
def _set_storage_access_error_msg(t: Tensor, s: str) -> None: ...
def _free_And_Remove_DeleterFn(storage_ptr: _int) -> None: ...
def _has_Standard_Deleter(storage_ptr: _int) -> _bool: ...

class _cuda_CUDAAllocator: ...

def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ...
def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ...
def _cuda_getAllocator() -> _cuda_CUDAAllocator: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(
    code_string: str,
    kernel_name: str,
    return_by_ref: _bool,
    num_outputs: _int,
    tensors: Tuple,
    kwargs: Dict[str, Union[_int, _float, _bool]],
) -> Tensor: ...
def _cuda_get_cudnn_benchmark_limit() -> _int: ...
def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ...
def _cuda_get_conv_benchmark_empty_cache() -> _bool: ...
def _cudnn_set_conv_benchmark_empty_cache(enable: _bool) -> None: ...
def _nccl_version() -> _int: ...
def _nccl_version_suffix() -> bytes : ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(
    input: Sequence[Tensor],
    output: Tensor,
    root: _int,
    op: _int,
    streams: Optional[Sequence[_CudaStreamBase]],
    comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_all_reduce(
    input: Sequence[Tensor],
    output: Sequence[Tensor],
    op: _int,
    streams: Optional[Sequence[_CudaStreamBase]],
    comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_broadcast(
    input: Sequence[Tensor],
    root: _int,
    streams: Optional[Sequence[_CudaStreamBase]],
    comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_all_gather(
    input: Sequence[Tensor],
    output: Sequence[Tensor],
    streams: Optional[Sequence[_CudaStreamBase]],
    comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_reduce_scatter(
    input: Sequence[Tensor],
    output: Sequence[Tensor],
    op: _int,
    streams: Optional[Sequence[_CudaStreamBase]],
    comms: Optional[Sequence[object]],
) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...

class _CudaDeviceProperties:
    name: str
    major: _int
    minor: _int
    multi_processor_count: _int
    total_memory: _int
    is_integrated: _int
    is_multi_gpu_board: _int
    max_threads_per_multi_processor: _int
    gcnArchName: str

# Functions related to SDPA
class _SDPAParams:
    query: Tensor
    key: Tensor
    value: Tensor
    attn_mask: Optional[Tensor]
    dropout: _float
    is_causal: _bool
    def __init__(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        attn_mask: Optional[Tensor],
        dropout: _float,
        is_causal: _bool) -> None: ...

class _SDPBackend(Enum):
    ERROR = -1
    MATH = 0
    FLASH_ATTENTION = 1
    EFFICIENT_ATTENTION = 2

def _can_use_flash_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _can_use_mem_efficient_attention(params: _SDPAParams, debug: _bool) -> _bool: ...

# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
def _broadcast_coalesced(
    tensors: List[Tensor],
    devices: List[_int],
    buffer_size: _int,
) -> List[List[Tensor]]: ...
def _scatter(
    tensor: Tensor,
    devices: List[_int],
    chunk_sizes: Optional[List[_int]],
    dim: _int,
    streams: Optional[List[Stream]],
) -> List[Tensor]: ...
def _scatter_out(
    tensor: Tensor,
    out_tensors: List[Tensor],
    dim: _int,
    streams: Optional[List[Stream]],
) -> List[Tensor]: ...
def _gather(
    tensors: List[Tensor],
    dim: _int,
    destination_index: Optional[_int],
) -> Tensor: ...
def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...

# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase(Stream):
    stream_id: _int
    device_index: _int
    device_type: _int

    device: _device
    cuda_stream: _int
    priority: _int

    def __new__(
        self,
        priority: _int = 0,
        stream_id: _int = 0,
        device_index: _int = 0,
        stream_ptr: _int = 0,
    ) -> _CudaStreamBase: ...
    def query(self) -> _bool: ...
    def synchronize(self) -> None: ...
    def priority_range(self) -> Tuple[_int, _int]: ...

# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
    device: _device
    cuda_event: _int

    def __new__(
        cls,
        enable_timing: _bool = False,
        blocking: _bool = False,
        interprocess: _bool = False,
    ) -> _CudaEventBase: ...
    @classmethod
    def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
    def record(self, stream: _CudaStreamBase) -> None: ...
    def wait(self, stream: _CudaStreamBase) -> None: ...
    def query(self) -> _bool: ...
    def elapsed_time(self, other: _CudaEventBase) -> _float: ...
    def synchronize(self) -> None: ...
    def ipc_handle(self) -> bytes: ...

# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
    def capture_begin(self, pool: Optional[Tuple[_int, _int]] = ..., capture_error_mode: str = "global") -> None: ...
    def capture_end(self) -> None: ...
    def replay(self) -> None: ...
    def reset(self) -> None: ...
    def pool(self) -> Tuple[_int, _int]: ...
    def enable_debug_mode(self) -> None: ...
    def debug_dump(self, debug_path: str) -> None: ...

def _cuda_isCurrentStreamCapturing() -> _bool: ...
def _graph_pool_handle() -> Tuple[_int, _int]: ...

# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(
    *arg: Any,
) -> None: ...  # THPModule_setWorkerSignalHandlers
def _set_worker_pids(
    key: _int,
    child_pids: Tuple[_int, ...],
) -> None: ...  # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ...  # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ...  # THPModule_errorIfAnyWorkerFails

# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
    def push_scope(self, scope_name: str) -> None: ...
    def pop_scope(self) -> None: ...
    def current_scope(self) -> str: ...
    def set_graph(self, graph: Graph) -> None: ...
    def graph(self) -> Graph: ...

def _create_graph_by_tracing(
    func: Callable[..., Any],
    inputs: Any,
    var_name_lookup_fn: Callable[[Tensor], str],
    strict: Any,
    force_outplace: Any,
    self: Any = None,
    argument_names: List[str] = [],
) -> Tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...

# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue: ...

Stack = List[IValue]

class JitType:
    annotation_str: str
    def isSubtypeOf(self, other: JitType) -> _bool: ...
    def with_dtype(self, dtype: _dtype) -> JitType: ...
    def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
    def kind(self) -> str: ...
    def scalarType(self) -> Optional[str]: ...
    def getElementType(self) -> JitType: ...
    def dtype(self) -> Optional[_dtype]: ...

class InferredType:
    def __init__(self, arg: Union[JitType, str]): ...
    def type(self) -> JitType: ...
    def success(self) -> _bool: ...
    def reason(self) -> str: ...

R = TypeVar("R", bound=JitType)

class AnyType(JitType):
    @staticmethod
    def get() -> AnyType: ...

class NoneType(JitType):
    @staticmethod
    def get() -> NoneType: ...

class BoolType(JitType):
    @staticmethod
    def get() -> BoolType: ...

class FloatType(JitType):
    @staticmethod
    def get() -> FloatType: ...

class ComplexType(JitType):
    @staticmethod
    def get() -> ComplexType: ...

class IntType(JitType):
    @staticmethod
    def get() -> IntType: ...

class SymIntType(JitType):
    @staticmethod
    def get() -> SymIntType: ...

class SymBoolType(JitType):
    @staticmethod
    def get() -> SymBoolType: ...

class NumberType(JitType):
    @staticmethod
    def get() -> NumberType: ...

class StringType(JitType):
    @staticmethod
    def get() -> StringType: ...

class DeviceObjType(JitType):
    @staticmethod
    def get() -> DeviceObjType: ...

class _GeneratorType(JitType):
    @staticmethod
    def get() -> _GeneratorType: ...

class StreamObjType(JitType):
    @staticmethod
    def get() -> StreamObjType: ...

class ListType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...
    @staticmethod
    def ofInts() -> ListType: ...
    @staticmethod
    def ofTensors() -> ListType: ...
    @staticmethod
    def ofFloats() -> ListType: ...
    @staticmethod
    def ofComplexDoubles() -> ListType: ...
    @staticmethod
    def ofBools() -> ListType: ...
    @staticmethod
    def ofStrings() -> ListType: ...

class DictType(JitType):
    def __init__(self, key: JitType, value: JitType) -> None: ...
    def getKeyType(self) -> JitType: ...
    def getValueType(self) -> JitType: ...

class TupleType(JitType):
    def __init__(self, a: List[Optional[JitType]]) -> None: ...
    def elements(self) -> List[JitType]: ...

class UnionType(JitType):
    def __init__(self, a: List[JitType]) -> None: ...

class ClassType(JitType):
    def __init__(self, qualified_name: str) -> None: ...

class InterfaceType(JitType):
    def __init__(self, qualified_name: str) -> None: ...
    def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
    def getMethodNames(self) -> List[str]: ...

class OptionalType(JitType, Generic[R]):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...
    @staticmethod
    def ofTensor() -> OptionalType: ...

class FutureType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

class AwaitType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

class RRefType(JitType):
    def __init__(self, a: JitType) -> None: ...

class EnumType(JitType):
    def __init__(
        self,
        qualified_name: str,
        value_type: JitType,
        enum_names_values: List[Any],
    ) -> None: ...

class TensorType(JitType):
    @classmethod
    def get(cls) -> TensorType: ...
    @classmethod
    def getInferred(cls) -> TensorType: ...
    def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
    def sizes(self) -> Optional[List[_int]]: ...
    def varyingSizes(self) -> Optional[List[Optional[_int]]]: ...
    def strides(self) -> Optional[List[_int]]: ...
    def device(self) -> Optional[_device]: ...
    def dim(self) -> _int: ...
    def dtype(self) -> Optional[_dtype]: ...
    @staticmethod
    def create_from_tensor(t: Tensor) -> TensorType: ...

# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange: ...
class TreeView: ...

class Ident(TreeView):
    @property
    def name(self) -> str: ...

class ClassDef(TreeView): ...

class Def(TreeView):
    def name(self) -> Ident: ...

class Decl(TreeView): ...

# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...

# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...

# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...

# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...
def _activate_cuda_trace() -> None: ...

# Defined in torch/csrc/Module.cpp
def _current_graph_task_id() -> _int: ...
def _current_autograd_node() -> _Node: ...

# Defined in torch/csrc/Exceptions.cpp
class _OutOfMemoryError(RuntimeError): ...
class _DistError(RuntimeError): ...
class _DistBackendError(RuntimeError): ...
class _DistStoreError(RuntimeError): ...
class _DistNetworkError(RuntimeError): ...

# Defined in torch/csrc/profiler/init.cpp
class CapturedTraceback:
    pass
def gather_traceback(python: _bool, script: _bool, cpp: _bool) -> CapturedTraceback: ...
def symbolize_tracebacks(tracebacks: List[CapturedTraceback]) -> List[Dict[str, Any]]: ...

def _load_mobile_module_from_file(filename: str): ...
def _load_mobile_module_from_bytes(bytes_: bytes): ...
def _load_jit_module_from_file(filename: str): ...
def _load_jit_module_from_bytes(bytes_: bytes): ...
def _save_mobile_module(m: LiteScriptModule, filename: str): ...
def _save_jit_module(m: ScriptModule, filename: str, extra_files: Dict[str, Any]): ...
def _save_mobile_module_to_bytes(m: LiteScriptModule) -> bytes: ...
def _save_jit_module_to_bytes(m: ScriptModule,  extra_files: Dict[str, Any]) -> bytes: ...
def _get_module_info_from_flatbuffer(data: bytes): ...
def _jit_resolve_packet(op_name: str, *args, **kwargs) -> str: ...
Back to Directory File Manager