Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/torch/_export/serde/schema.py

# NOTE: This is a placeholder for iterating on export serialization schema design.
#       Anything is subject to change and no guarantee is provided at this point.

from dataclasses import dataclass, fields
from enum import IntEnum
from typing import Dict, List, Optional, Tuple


# NOTE: Please update this value if any modifications are made to the schema
SCHEMA_VERSION = 2
TREESPEC_VERSION = 1

# TODO (zhxchen17) Move to a separate file.
class _Union:
    @classmethod
    def create(cls, **kwargs):
        assert len(kwargs) == 1
        return cls(**{**{f.name: None for f in fields(cls)}, **kwargs})  # type: ignore[arg-type]

    def __post_init__(self):
        assert sum(1 for f in fields(self) if getattr(self, f.name) is not None) == 1  # type: ignore[arg-type, misc]

    @property
    def value(self):
        val = next((getattr(self, f.name) for f in fields(self) if getattr(self, f.name) is not None), None)  # type: ignore[arg-type]
        assert val is not None
        return val

    @property
    def type(self):
        val_type = next((f.name for f in fields(self) if getattr(self, f.name) is not None), None)  # type: ignore[arg-type]
        assert val_type is not None
        return val_type

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        return f"{type(self).__name__}({self.type}={self.value})"


class ScalarType(IntEnum):
    UNKNOWN = 0
    BYTE = 1
    CHAR = 2
    SHORT = 3
    INT = 4
    LONG = 5
    HALF = 6
    FLOAT = 7
    DOUBLE = 8
    COMPLEXHALF = 9
    COMPLEXFLOAT = 10
    COMPLEXDOUBLE = 11
    BOOL = 12
    BFLOAT16 = 13


class Layout(IntEnum):
    Unknown = 0
    SparseCoo = 1
    SparseCsr = 2
    SparseCsc = 3
    SparseBsr = 4
    SparseBsc = 5
    _mkldnn = 6
    Strided = 7


class MemoryFormat(IntEnum):
    Unknown = 0
    ContiguousFormat = 1
    ChannelsLast = 2
    ChannelsLast3d = 3
    PreserveFormat = 4


@dataclass
class Device:
    type: str
    index: Optional[int]


@dataclass(repr=False)
class SymExprHint(_Union):
    as_int: int
    as_float: float
    as_bool: bool


# This is for storing the symbolic expressions behind symints/symfloats/symbools
# For example, we can get something like
# SymExpr(expr_str="s0 + s1", hint=SymExprHint(as_int=4)
# if we also have the hint that s0 and s1 are both 2.
@dataclass
class SymExpr:
    expr_str: str
    hint: Optional[SymExprHint] = None


@dataclass(repr=False)
class SymInt(_Union):
    as_expr: SymExpr
    as_int: int


@dataclass(repr=False)
class SymBool(_Union):
    as_expr: SymExpr
    as_bool: bool


@dataclass
class TensorMeta:
    dtype: ScalarType
    sizes: List[SymInt]
    requires_grad: bool
    device: Device
    strides: List[SymInt]
    storage_offset: int
    layout: Layout


# In most cases we will use the "as_name" field to store arguments which are
# SymInts.
# The "as_int" field is used in the case where we have a list containing a mix
# of SymInt and ints (ex. [1, s0, ...]). We will serialize this type of list to
# be List[SymIntArgument] and map the SymInts to the "as_name" field, and ints
# to the "as_int" field.
@dataclass(repr=False)
class SymIntArgument(_Union):
    as_name: str
    as_int: int


# In most cases we will use the "as_name" field to store arguments which are
# SymBools.
# The "as_bool" field is used in the case where we have a list containing a mix
# of SymBool and bools (ex. [True, i0, ...]). We will serialize this type of list to
# be List[SymboolArgument] and map the SymBools to the "as_name" field, and bools
# to the "as_bool" field.
@dataclass(repr=False)
class SymBoolArgument(_Union):
    as_name: str
    as_bool: bool


@dataclass
class TensorArgument:
    name: str


# This is use for storing the contents of a list which contain optional tensors
# (Tensor?[], ex. [Tensor, None, ...]), where the list will be serialized to the
# type List[OptionalTensorArgument], with tensor values seiralized to the
# "as_tensor" field, and None values serialized to the "as_none" field.
@dataclass(repr=False)
class OptionalTensorArgument(_Union):
    as_tensor: str
    as_none: Tuple[()]


@dataclass
class GraphArgument:
    name: str
    graph: 'Graph'


@dataclass
class CustomObjArgument:
    name: str


# This is actually a union type
@dataclass(repr=False)
class Argument(_Union):
    as_none: Tuple[()]
    as_tensor: TensorArgument
    as_tensors: List[TensorArgument]
    as_int: int
    as_ints: List[int]
    as_float: float
    as_floats: List[float]
    as_string: str
    as_strings: List[str]
    as_sym_int: SymIntArgument
    as_sym_ints: List[SymIntArgument]
    as_scalar_type: ScalarType
    as_memory_format: MemoryFormat
    as_layout: Layout
    as_device: Device
    as_bool: bool
    as_bools: List[bool]
    as_sym_bool: SymBoolArgument
    as_sym_bools: List[SymBoolArgument]
    as_graph: GraphArgument
    as_optional_tensors: List[OptionalTensorArgument]
    as_custom_obj: CustomObjArgument


@dataclass
class NamedArgument:
    # Argument name from the operator schema
    name: str
    arg: Argument


@dataclass
class Node:
    target: str
    inputs: List[NamedArgument]
    outputs: List[Argument]
    metadata: Dict[str, str]


@dataclass
class Graph:
    inputs: List[Argument]
    outputs: List[Argument]
    nodes: List[Node]
    tensor_values: Dict[str, TensorMeta]
    sym_int_values: Dict[str, SymInt]
    sym_bool_values: Dict[str, SymBool]
    # This is for deserializing the submodule graphs from higher order ops
    # (ex. cond, map) where single tensor returns will just return a single
    # tensor, rather than following export schema and returning a singleton
    # list.
    is_single_tensor_return: bool = False


@dataclass
class UserInputSpec:
    # Actually, only tensors and SymInts are allowed here
    arg: Argument


@dataclass
class InputToParameterSpec:
    arg: TensorArgument
    parameter_name: str


@dataclass
class InputToBufferSpec:
    arg: TensorArgument
    buffer_name: str


@dataclass
class InputToTensorConstantSpec:
    arg: TensorArgument
    tensor_constant_name: str


@dataclass
class InputSpec(_Union):
    user_input: UserInputSpec
    parameter: InputToParameterSpec
    buffer: InputToBufferSpec
    tensor_constant: InputToTensorConstantSpec


@dataclass
class UserOutputSpec:
    arg: Argument


@dataclass
class LossOutputSpec:
    arg: TensorArgument


@dataclass
class BufferMutationSpec:
    arg: TensorArgument
    buffer_name: str


@dataclass
class GradientToParameterSpec:
    arg: TensorArgument
    parameter_name: str


@dataclass
class GradientToUserInputSpec:
    arg: TensorArgument
    user_input_name: str


@dataclass
class OutputSpec(_Union):
    user_output: UserOutputSpec
    loss_output: LossOutputSpec
    buffer_mutation: BufferMutationSpec
    gradient_to_parameter: GradientToParameterSpec
    gradient_to_user_input: GradientToUserInputSpec


@dataclass
class GraphSignature:
    input_specs: List[InputSpec]
    output_specs: List[OutputSpec]


@dataclass
class RangeConstraint:
    min_val: int
    max_val: int


@dataclass
class ModuleCallSignature:
    inputs: List[Argument]
    outputs: List[Argument]

    # These are serialized by calling pytree.treespec_loads
    # And deserialized by calling pytree.treespec_dumps
    in_spec: str
    out_spec: str


@dataclass
class ModuleCallEntry:
    fqn: str
    signature: Optional[ModuleCallSignature] = None


@dataclass
class GraphModule:
    graph: Graph
    signature: GraphSignature
    # This is used for unflattening, by tracking the calling structure of all of
    # the modules in order to unflatten the modules back to the eager calling
    # conventions.
    module_call_graph: List[ModuleCallEntry]


@dataclass
class ExportedProgram:
    graph_module: GraphModule
    # Key is the opset namespace (ex. aten), and value is the version number
    opset_version: Dict[str, int]
    range_constraints: Dict[str, RangeConstraint]
    schema_version: int
    dialect: str
Back to Directory File Manager