Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/torch/include/c10/util/Float8_e4m3fn.h

#pragma once

/// Defines the Float8_e4m3fn type (8-bit floating-point) including conversions
/// to standard C types and basic arithmetic operations. Note that arithmetic
/// operations are implemented by converting to floating point and
/// performing the operation in float32.
/// Binary configuration:
/// s eeee mmm
/// 1 sign bit
/// 4 exponent bits
/// 3 mantissa bits
/// bias = 7
///
/// Implementation based on the paper https://arxiv.org/pdf/2209.05433.pdf
/// and inspired by Half implementation from pytorch/c10/util/Half.h

#include <c10/macros/Macros.h>
#include <c10/util/C++17.h>
#include <c10/util/TypeSafeSignMath.h>
#include <c10/util/floating_point_utils.h>
#include <type_traits>

#if defined(__cplusplus) && (__cplusplus >= 201103L)
#include <cmath>
#include <cstdint>
#elif !defined(__OPENCL_VERSION__)
#include <math.h>
#include <stdint.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

#include <climits>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <string>
#include <utility>

#include <typeinfo> // operator typeid

namespace c10 {

namespace detail {

/*
 * Convert a 8-bit floating-point number in fp8 E4M3FN format, in bit
 * representation, to a 32-bit floating-point number in IEEE single-precision
 * format, in bit representation.
 *
 * @note The implementation doesn't use any floating-point operations.
 */
inline C10_HOST_DEVICE float fp8e4m3fn_to_fp32_value(uint8_t input) {
  /*
   * Extend the fp8 E4M3FN number to 32 bits and shift to the
   * upper part of the 32-bit word:
   *      +---+----+---+-----------------------------+
   *      | S |EEEE|MMM|0000 0000 0000 0000 0000 0000|
   *      +---+----+---+-----------------------------+
   * Bits  31 27-30 24-26          0-23
   *
   * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0
   * - zero bits.
   */
  const uint32_t w = (uint32_t)input << 24;
  /*
   * Extract the sign of the input number into the high bit of the 32-bit word:
   *
   *      +---+----------------------------------+
   *      | S |0000000 00000000 00000000 00000000|
   *      +---+----------------------------------+
   * Bits  31                 0-31
   */
  const uint32_t sign = w & UINT32_C(0x80000000);
  /*
   * Extract mantissa and biased exponent of the input number into the bits 0-30
   * of the 32-bit word:
   *
   *      +---+----+---+-----------------------------+
   *      | S |EEEE|MMM|0000 0000 0000 0000 0000 0000|
   *      +---+----+---+-----------------------------+
   * Bits  31  27-30 24-26      0-23
   */
  const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
  /*
   * Renorm shift is the number of bits to shift mantissa left to make the
   * half-precision number normalized. If the initial number is normalized, some
   * of its high 5 bits (sign == 0 and 4-bit exponent) equals one. In this case
   * renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note
   * that if we shift denormalized nonsign by renorm_shift, the unit bit of
   * mantissa will shift into exponent, turning the biased exponent into 1, and
   * making mantissa normalized (i.e. without leading 1).
   */
#if defined(__CUDA_ARCH__)
  uint32_t renorm_shift = __clz(nonsign);
#elif defined(__SYCL_DEVICE_ONLY__)
  // Note: zero is not a supported input into `__builtin_clz`
  uint32_t renorm_shift =
      nonsign != 0 ? __builtin_clz(nonsign) : sizeof(uint32_t) * CHAR_BIT;
#elif defined(_MSC_VER)
  unsigned long nonsign_bsr;
  _BitScanReverse(&nonsign_bsr, (unsigned long)nonsign);
  uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31;
#else
  // Note: zero is not a supported input into `__builtin_clz`
  uint32_t renorm_shift =
      nonsign != 0 ? __builtin_clz(nonsign) : sizeof(uint32_t) * CHAR_BIT;
#endif
  renorm_shift = renorm_shift > 4 ? renorm_shift - 4 : 0;
  /*
   * Iff fp8e4m3fn number has all exponent and mantissa bits set to 1,
   * the addition overflows it into bit 31, and the subsequent shift turns the
   * high 9 bits into 1. Thus inf_nan_mask == 0x7F800000 if the fp8e4m3fn number
   * is Nan, 0x00000000 otherwise
   */
  const int32_t inf_nan_mask =
      ((int32_t)(nonsign + 0x01000000) >> 8) & INT32_C(0x7F800000);
  /*
   * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31
   * into 1. Otherwise, bit 31 remains 0. The signed shift right by 31
   * broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask ==
   * 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
   * 0x00000000 otherwise
   */
  const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
  /*
   * 1. Shift nonsign left by renorm_shift to normalize it (if the input
   * was denormal)
   * 2. Shift nonsign right by 4 so the exponent (4 bits originally)
   * becomes an 8-bit field and 3-bit mantissa shifts into the 3 high
   * bits of the 23-bit mantissa of IEEE single-precision number.
   * 3. Add 0x78 to the exponent (starting at bit 23) to compensate the
   * different in exponent bias (0x7F for single-precision number less 0x07
   * for fp8e4m3fn number).
   * 4. Subtract renorm_shift from the exponent (starting at bit 23) to
   * account for renormalization. As renorm_shift is less than 0x78, this
   * can be combined with step 3.
   * 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the
   * input was NaN or infinity.
   * 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent
   * into zero if the input was zero.
   * 7. Combine with the sign of the input number.
   */
  uint32_t result = sign |
      ((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
        inf_nan_mask) &
       ~zero_mask);
  return fp32_from_bits(result);
}

/*
 * Convert a 32-bit floating-point number in IEEE single-precision format to a
 * 8-bit floating-point number in fp8 E4M3FN format, in bit representation.
 */
inline C10_HOST_DEVICE uint8_t fp8e4m3fn_from_fp32_value(float f) {
  /*
   * Binary representation of 480.0f, which is the first value
   * not representable in fp8e4m3fn range:
   * 0 1111 111 - fp8e4m3fn
   * 0 10000111 11100000000000000000000 - fp32
   */
  constexpr uint32_t fp8_max = UINT32_C(1087) << 20;

  /*
   * A mask for converting fp32 numbers lower than fp8e4m3fn normal range
   * into denorm representation
   * magic number: ((127 - 7) + (23 - 3) + 1)
   */
  constexpr uint32_t denorm_mask = UINT32_C(141) << 23;

  uint32_t f_bits = fp32_to_bits(f);

  uint8_t result = 0u;

  /*
   * Extract the sign of the input number into the high bit of the 32-bit word:
   *
   *      +---+----------------------------------+
   *      | S |0000000 00000000 00000000 00000000|
   *      +---+----------------------------------+
   * Bits  31                 0-31
   */
  const uint32_t sign = f_bits & UINT32_C(0x80000000);

  /*
   * Set sign bit to 0
   */
  f_bits ^= sign;

  if (f_bits >= fp8_max) {
    // NaN - all exponent and mantissa bits set to 1
    result = 0x7f;
  } else {
    if (f_bits < (UINT32_C(121) << 23)) {
      // Input number is smaller than 2^(-6), which is the smallest
      // fp8e4m3fn normal number
      f_bits =
          fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
      result = static_cast<uint8_t>(f_bits - denorm_mask);
    } else {
      // resulting mantissa is odd
      uint8_t mant_odd = (f_bits >> 20) & 1;

      // update exponent, rounding bias part 1
      f_bits += ((uint32_t)(7 - 127) << 23) + 0x7FFFF;

      // rounding bias part 2
      f_bits += mant_odd;

      // take the bits!
      result = static_cast<uint8_t>(f_bits >> 20);
    }
  }

  result |= static_cast<uint8_t>(sign >> 24);
  return result;
}

} // namespace detail

struct alignas(1) Float8_e4m3fn {
  uint8_t x;

  struct from_bits_t {};
  C10_HOST_DEVICE static constexpr from_bits_t from_bits() {
    return from_bits_t();
  }

  Float8_e4m3fn() = default;

  constexpr C10_HOST_DEVICE Float8_e4m3fn(uint8_t bits, from_bits_t)
      : x(bits){};
  inline C10_HOST_DEVICE Float8_e4m3fn(float value);
  inline C10_HOST_DEVICE operator float() const;
  inline C10_HOST_DEVICE bool isnan() const;
};

C10_API std::ostream& operator<<(std::ostream& out, const Float8_e4m3fn& value);

} // namespace c10

#include <c10/util/Float8_e4m3fn-inl.h> // IWYU pragma: keep
Back to Directory File Manager