Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/transformers/__init__.py

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
# in the namespace without actually importing anything (and especially none of the backends).

__version__ = "4.39.3"

from typing import TYPE_CHECKING

# Check the dependencies satisfy the minimal versions required.
from . import dependency_versions_check
from .utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_bitsandbytes_available,
    is_essentia_available,
    is_flax_available,
    is_g2p_en_available,
    is_keras_nlp_available,
    is_librosa_available,
    is_pretty_midi_available,
    is_scipy_available,
    is_sentencepiece_available,
    is_speech_available,
    is_tensorflow_text_available,
    is_tf_available,
    is_timm_available,
    is_tokenizers_available,
    is_torch_available,
    is_torchaudio_available,
    is_torchvision_available,
    is_vision_available,
    logging,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Base objects, independent of any specific backend
_import_structure = {
    "audio_utils": [],
    "benchmark": [],
    "commands": [],
    "configuration_utils": ["PretrainedConfig"],
    "convert_graph_to_onnx": [],
    "convert_slow_tokenizers_checkpoints_to_fast": [],
    "convert_tf_hub_seq_to_seq_bert_to_pytorch": [],
    "data": [
        "DataProcessor",
        "InputExample",
        "InputFeatures",
        "SingleSentenceClassificationProcessor",
        "SquadExample",
        "SquadFeatures",
        "SquadV1Processor",
        "SquadV2Processor",
        "glue_compute_metrics",
        "glue_convert_examples_to_features",
        "glue_output_modes",
        "glue_processors",
        "glue_tasks_num_labels",
        "squad_convert_examples_to_features",
        "xnli_compute_metrics",
        "xnli_output_modes",
        "xnli_processors",
        "xnli_tasks_num_labels",
    ],
    "data.data_collator": [
        "DataCollator",
        "DataCollatorForLanguageModeling",
        "DataCollatorForPermutationLanguageModeling",
        "DataCollatorForSeq2Seq",
        "DataCollatorForSOP",
        "DataCollatorForTokenClassification",
        "DataCollatorForWholeWordMask",
        "DataCollatorWithPadding",
        "DefaultDataCollator",
        "default_data_collator",
    ],
    "data.metrics": [],
    "data.processors": [],
    "debug_utils": [],
    "deepspeed": [],
    "dependency_versions_check": [],
    "dependency_versions_table": [],
    "dynamic_module_utils": [],
    "feature_extraction_sequence_utils": ["SequenceFeatureExtractor"],
    "feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"],
    "file_utils": [],
    "generation": ["GenerationConfig", "TextIteratorStreamer", "TextStreamer"],
    "hf_argparser": ["HfArgumentParser"],
    "hyperparameter_search": [],
    "image_transforms": [],
    "integrations": [
        "is_clearml_available",
        "is_comet_available",
        "is_dvclive_available",
        "is_neptune_available",
        "is_optuna_available",
        "is_ray_available",
        "is_ray_tune_available",
        "is_sigopt_available",
        "is_tensorboard_available",
        "is_wandb_available",
    ],
    "modelcard": ["ModelCard"],
    "modeling_tf_pytorch_utils": [
        "convert_tf_weight_name_to_pt_weight_name",
        "load_pytorch_checkpoint_in_tf2_model",
        "load_pytorch_model_in_tf2_model",
        "load_pytorch_weights_in_tf2_model",
        "load_tf2_checkpoint_in_pytorch_model",
        "load_tf2_model_in_pytorch_model",
        "load_tf2_weights_in_pytorch_model",
    ],
    "models": [],
    # Models
    "models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
    "models.align": [
        "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AlignConfig",
        "AlignProcessor",
        "AlignTextConfig",
        "AlignVisionConfig",
    ],
    "models.altclip": [
        "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AltCLIPConfig",
        "AltCLIPProcessor",
        "AltCLIPTextConfig",
        "AltCLIPVisionConfig",
    ],
    "models.audio_spectrogram_transformer": [
        "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ASTConfig",
        "ASTFeatureExtractor",
    ],
    "models.auto": [
        "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CONFIG_MAPPING",
        "FEATURE_EXTRACTOR_MAPPING",
        "IMAGE_PROCESSOR_MAPPING",
        "MODEL_NAMES_MAPPING",
        "PROCESSOR_MAPPING",
        "TOKENIZER_MAPPING",
        "AutoConfig",
        "AutoFeatureExtractor",
        "AutoImageProcessor",
        "AutoProcessor",
        "AutoTokenizer",
    ],
    "models.autoformer": [
        "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "AutoformerConfig",
    ],
    "models.bark": [
        "BarkCoarseConfig",
        "BarkConfig",
        "BarkFineConfig",
        "BarkProcessor",
        "BarkSemanticConfig",
    ],
    "models.bart": ["BartConfig", "BartTokenizer"],
    "models.barthez": [],
    "models.bartpho": [],
    "models.beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig"],
    "models.bert": [
        "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BasicTokenizer",
        "BertConfig",
        "BertTokenizer",
        "WordpieceTokenizer",
    ],
    "models.bert_generation": ["BertGenerationConfig"],
    "models.bert_japanese": [
        "BertJapaneseTokenizer",
        "CharacterTokenizer",
        "MecabTokenizer",
    ],
    "models.bertweet": ["BertweetTokenizer"],
    "models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig"],
    "models.bigbird_pegasus": [
        "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BigBirdPegasusConfig",
    ],
    "models.biogpt": [
        "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BioGptConfig",
        "BioGptTokenizer",
    ],
    "models.bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig"],
    "models.blenderbot": [
        "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BlenderbotConfig",
        "BlenderbotTokenizer",
    ],
    "models.blenderbot_small": [
        "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BlenderbotSmallConfig",
        "BlenderbotSmallTokenizer",
    ],
    "models.blip": [
        "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BlipConfig",
        "BlipProcessor",
        "BlipTextConfig",
        "BlipVisionConfig",
    ],
    "models.blip_2": [
        "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Blip2Config",
        "Blip2Processor",
        "Blip2QFormerConfig",
        "Blip2VisionConfig",
    ],
    "models.bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig"],
    "models.bridgetower": [
        "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BridgeTowerConfig",
        "BridgeTowerProcessor",
        "BridgeTowerTextConfig",
        "BridgeTowerVisionConfig",
    ],
    "models.bros": [
        "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BrosConfig",
        "BrosProcessor",
    ],
    "models.byt5": ["ByT5Tokenizer"],
    "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],
    "models.canine": [
        "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CanineConfig",
        "CanineTokenizer",
    ],
    "models.chinese_clip": [
        "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ChineseCLIPConfig",
        "ChineseCLIPProcessor",
        "ChineseCLIPTextConfig",
        "ChineseCLIPVisionConfig",
    ],
    "models.clap": [
        "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
        "ClapAudioConfig",
        "ClapConfig",
        "ClapProcessor",
        "ClapTextConfig",
    ],
    "models.clip": [
        "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CLIPConfig",
        "CLIPProcessor",
        "CLIPTextConfig",
        "CLIPTokenizer",
        "CLIPVisionConfig",
    ],
    "models.clipseg": [
        "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CLIPSegConfig",
        "CLIPSegProcessor",
        "CLIPSegTextConfig",
        "CLIPSegVisionConfig",
    ],
    "models.clvp": [
        "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ClvpConfig",
        "ClvpDecoderConfig",
        "ClvpEncoderConfig",
        "ClvpFeatureExtractor",
        "ClvpProcessor",
        "ClvpTokenizer",
    ],
    "models.code_llama": [],
    "models.codegen": [
        "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CodeGenConfig",
        "CodeGenTokenizer",
    ],
    "models.cohere": ["COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CohereConfig"],
    "models.conditional_detr": [
        "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConditionalDetrConfig",
    ],
    "models.convbert": [
        "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConvBertConfig",
        "ConvBertTokenizer",
    ],
    "models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"],
    "models.convnextv2": [
        "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ConvNextV2Config",
    ],
    "models.cpm": [],
    "models.cpmant": [
        "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CpmAntConfig",
        "CpmAntTokenizer",
    ],
    "models.ctrl": [
        "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CTRLConfig",
        "CTRLTokenizer",
    ],
    "models.cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"],
    "models.data2vec": [
        "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Data2VecAudioConfig",
        "Data2VecTextConfig",
        "Data2VecVisionConfig",
    ],
    "models.deberta": [
        "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DebertaConfig",
        "DebertaTokenizer",
    ],
    "models.deberta_v2": [
        "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DebertaV2Config",
    ],
    "models.decision_transformer": [
        "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DecisionTransformerConfig",
    ],
    "models.deformable_detr": [
        "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DeformableDetrConfig",
    ],
    "models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"],
    "models.deprecated": [],
    "models.deprecated.bort": [],
    "models.deprecated.mctct": [
        "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MCTCTConfig",
        "MCTCTFeatureExtractor",
        "MCTCTProcessor",
    ],
    "models.deprecated.mmbt": ["MMBTConfig"],
    "models.deprecated.open_llama": [
        "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "OpenLlamaConfig",
    ],
    "models.deprecated.retribert": [
        "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RetriBertConfig",
        "RetriBertTokenizer",
    ],
    "models.deprecated.tapex": ["TapexTokenizer"],
    "models.deprecated.trajectory_transformer": [
        "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TrajectoryTransformerConfig",
    ],
    "models.deprecated.transfo_xl": [
        "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TransfoXLConfig",
        "TransfoXLCorpus",
        "TransfoXLTokenizer",
    ],
    "models.deprecated.van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"],
    "models.depth_anything": ["DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP", "DepthAnythingConfig"],
    "models.deta": ["DETA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetaConfig"],
    "models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
    "models.dialogpt": [],
    "models.dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"],
    "models.dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config"],
    "models.distilbert": [
        "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DistilBertConfig",
        "DistilBertTokenizer",
    ],
    "models.dit": [],
    "models.donut": [
        "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DonutProcessor",
        "DonutSwinConfig",
    ],
    "models.dpr": [
        "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DPRConfig",
        "DPRContextEncoderTokenizer",
        "DPRQuestionEncoderTokenizer",
        "DPRReaderOutput",
        "DPRReaderTokenizer",
    ],
    "models.dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"],
    "models.efficientformer": [
        "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "EfficientFormerConfig",
    ],
    "models.efficientnet": [
        "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "EfficientNetConfig",
    ],
    "models.electra": [
        "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ElectraConfig",
        "ElectraTokenizer",
    ],
    "models.encodec": [
        "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "EncodecConfig",
        "EncodecFeatureExtractor",
    ],
    "models.encoder_decoder": ["EncoderDecoderConfig"],
    "models.ernie": [
        "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ErnieConfig",
    ],
    "models.ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"],
    "models.esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig", "EsmTokenizer"],
    "models.falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
    "models.fastspeech2_conformer": [
        "FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FastSpeech2ConformerConfig",
        "FastSpeech2ConformerHifiGanConfig",
        "FastSpeech2ConformerTokenizer",
        "FastSpeech2ConformerWithHifiGanConfig",
    ],
    "models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
    "models.flava": [
        "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FlavaConfig",
        "FlavaImageCodebookConfig",
        "FlavaImageConfig",
        "FlavaMultimodalConfig",
        "FlavaTextConfig",
    ],
    "models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
    "models.focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"],
    "models.fsmt": [
        "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FSMTConfig",
        "FSMTTokenizer",
    ],
    "models.funnel": [
        "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "FunnelConfig",
        "FunnelTokenizer",
    ],
    "models.fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"],
    "models.gemma": ["GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "GemmaConfig"],
    "models.git": [
        "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GitConfig",
        "GitProcessor",
        "GitVisionConfig",
    ],
    "models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"],
    "models.gpt2": [
        "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPT2Config",
        "GPT2Tokenizer",
    ],
    "models.gpt_bigcode": [
        "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTBigCodeConfig",
    ],
    "models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"],
    "models.gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"],
    "models.gpt_neox_japanese": [
        "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTNeoXJapaneseConfig",
    ],
    "models.gpt_sw3": [],
    "models.gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig"],
    "models.gptsan_japanese": [
        "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GPTSanJapaneseConfig",
        "GPTSanJapaneseTokenizer",
    ],
    "models.graphormer": [
        "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GraphormerConfig",
    ],
    "models.groupvit": [
        "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "GroupViTConfig",
        "GroupViTTextConfig",
        "GroupViTVisionConfig",
    ],
    "models.herbert": ["HerbertTokenizer"],
    "models.hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"],
    "models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"],
    "models.idefics": [
        "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "IdeficsConfig",
    ],
    "models.imagegpt": ["IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ImageGPTConfig"],
    "models.informer": ["INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig"],
    "models.instructblip": [
        "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "InstructBlipConfig",
        "InstructBlipProcessor",
        "InstructBlipQFormerConfig",
        "InstructBlipVisionConfig",
    ],
    "models.jukebox": [
        "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "JukeboxConfig",
        "JukeboxPriorConfig",
        "JukeboxTokenizer",
        "JukeboxVQVAEConfig",
    ],
    "models.kosmos2": [
        "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Kosmos2Config",
        "Kosmos2Processor",
    ],
    "models.layoutlm": [
        "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LayoutLMConfig",
        "LayoutLMTokenizer",
    ],
    "models.layoutlmv2": [
        "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LayoutLMv2Config",
        "LayoutLMv2FeatureExtractor",
        "LayoutLMv2ImageProcessor",
        "LayoutLMv2Processor",
        "LayoutLMv2Tokenizer",
    ],
    "models.layoutlmv3": [
        "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LayoutLMv3Config",
        "LayoutLMv3FeatureExtractor",
        "LayoutLMv3ImageProcessor",
        "LayoutLMv3Processor",
        "LayoutLMv3Tokenizer",
    ],
    "models.layoutxlm": ["LayoutXLMProcessor"],
    "models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
    "models.levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LevitConfig"],
    "models.lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
    "models.llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
    "models.llava": [
        "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LlavaConfig",
        "LlavaProcessor",
    ],
    "models.llava_next": [
        "LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LlavaNextConfig",
        "LlavaNextProcessor",
    ],
    "models.longformer": [
        "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LongformerConfig",
        "LongformerTokenizer",
    ],
    "models.longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config"],
    "models.luke": [
        "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LukeConfig",
        "LukeTokenizer",
    ],
    "models.lxmert": [
        "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "LxmertConfig",
        "LxmertTokenizer",
    ],
    "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
    "models.mamba": ["MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MambaConfig"],
    "models.marian": ["MarianConfig"],
    "models.markuplm": [
        "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MarkupLMConfig",
        "MarkupLMFeatureExtractor",
        "MarkupLMProcessor",
        "MarkupLMTokenizer",
    ],
    "models.mask2former": [
        "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Mask2FormerConfig",
    ],
    "models.maskformer": [
        "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MaskFormerConfig",
        "MaskFormerSwinConfig",
    ],
    "models.mbart": ["MBartConfig"],
    "models.mbart50": [],
    "models.mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig"],
    "models.megatron_bert": [
        "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MegatronBertConfig",
    ],
    "models.megatron_gpt2": [],
    "models.mgp_str": [
        "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MgpstrConfig",
        "MgpstrProcessor",
        "MgpstrTokenizer",
    ],
    "models.mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"],
    "models.mixtral": ["MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MixtralConfig"],
    "models.mluke": [],
    "models.mobilebert": [
        "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MobileBertConfig",
        "MobileBertTokenizer",
    ],
    "models.mobilenet_v1": [
        "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MobileNetV1Config",
    ],
    "models.mobilenet_v2": [
        "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MobileNetV2Config",
    ],
    "models.mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig"],
    "models.mobilevitv2": [
        "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MobileViTV2Config",
    ],
    "models.mpnet": [
        "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MPNetConfig",
        "MPNetTokenizer",
    ],
    "models.mpt": ["MPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MptConfig"],
    "models.mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"],
    "models.mt5": ["MT5Config"],
    "models.musicgen": [
        "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "MusicgenConfig",
        "MusicgenDecoderConfig",
    ],
    "models.musicgen_melody": [
        "MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST",
        "MusicgenMelodyConfig",
        "MusicgenMelodyDecoderConfig",
    ],
    "models.mvp": ["MvpConfig", "MvpTokenizer"],
    "models.nat": ["NAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "NatConfig"],
    "models.nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
    "models.nllb": [],
    "models.nllb_moe": ["NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig"],
    "models.nougat": ["NougatProcessor"],
    "models.nystromformer": [
        "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "NystromformerConfig",
    ],
    "models.oneformer": [
        "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "OneFormerConfig",
        "OneFormerProcessor",
    ],
    "models.openai": [
        "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "OpenAIGPTConfig",
        "OpenAIGPTTokenizer",
    ],
    "models.opt": ["OPTConfig"],
    "models.owlv2": [
        "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Owlv2Config",
        "Owlv2Processor",
        "Owlv2TextConfig",
        "Owlv2VisionConfig",
    ],
    "models.owlvit": [
        "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "OwlViTConfig",
        "OwlViTProcessor",
        "OwlViTTextConfig",
        "OwlViTVisionConfig",
    ],
    "models.patchtsmixer": [
        "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PatchTSMixerConfig",
    ],
    "models.patchtst": ["PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP", "PatchTSTConfig"],
    "models.pegasus": [
        "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PegasusConfig",
        "PegasusTokenizer",
    ],
    "models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
    "models.perceiver": [
        "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PerceiverConfig",
        "PerceiverTokenizer",
    ],
    "models.persimmon": ["PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP", "PersimmonConfig"],
    "models.phi": ["PHI_PRETRAINED_CONFIG_ARCHIVE_MAP", "PhiConfig"],
    "models.phobert": ["PhobertTokenizer"],
    "models.pix2struct": [
        "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pix2StructConfig",
        "Pix2StructProcessor",
        "Pix2StructTextConfig",
        "Pix2StructVisionConfig",
    ],
    "models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"],
    "models.poolformer": [
        "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "PoolFormerConfig",
    ],
    "models.pop2piano": [
        "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Pop2PianoConfig",
    ],
    "models.prophetnet": [
        "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ProphetNetConfig",
        "ProphetNetTokenizer",
    ],
    "models.pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig"],
    "models.pvt_v2": ["PVT_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtV2Config"],
    "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
    "models.qwen2": [
        "QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Qwen2Config",
        "Qwen2Tokenizer",
    ],
    "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
    "models.realm": [
        "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RealmConfig",
        "RealmTokenizer",
    ],
    "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
    "models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"],
    "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"],
    "models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"],
    "models.roberta": [
        "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaConfig",
        "RobertaTokenizer",
    ],
    "models.roberta_prelayernorm": [
        "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RobertaPreLayerNormConfig",
    ],
    "models.roc_bert": [
        "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoCBertConfig",
        "RoCBertTokenizer",
    ],
    "models.roformer": [
        "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "RoFormerConfig",
        "RoFormerTokenizer",
    ],
    "models.rwkv": ["RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP", "RwkvConfig"],
    "models.sam": [
        "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SamConfig",
        "SamMaskDecoderConfig",
        "SamProcessor",
        "SamPromptEncoderConfig",
        "SamVisionConfig",
    ],
    "models.seamless_m4t": [
        "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SeamlessM4TConfig",
        "SeamlessM4TFeatureExtractor",
        "SeamlessM4TProcessor",
    ],
    "models.seamless_m4t_v2": [
        "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SeamlessM4Tv2Config",
    ],
    "models.segformer": ["SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegformerConfig"],
    "models.seggpt": ["SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegGptConfig"],
    "models.sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"],
    "models.sew_d": ["SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWDConfig"],
    "models.siglip": [
        "SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SiglipConfig",
        "SiglipProcessor",
        "SiglipTextConfig",
        "SiglipVisionConfig",
    ],
    "models.speech_encoder_decoder": ["SpeechEncoderDecoderConfig"],
    "models.speech_to_text": [
        "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Speech2TextConfig",
        "Speech2TextFeatureExtractor",
        "Speech2TextProcessor",
    ],
    "models.speech_to_text_2": [
        "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Speech2Text2Config",
        "Speech2Text2Processor",
        "Speech2Text2Tokenizer",
    ],
    "models.speecht5": [
        "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
        "SpeechT5Config",
        "SpeechT5FeatureExtractor",
        "SpeechT5HifiGanConfig",
        "SpeechT5Processor",
    ],
    "models.splinter": [
        "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SplinterConfig",
        "SplinterTokenizer",
    ],
    "models.squeezebert": [
        "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SqueezeBertConfig",
        "SqueezeBertTokenizer",
    ],
    "models.stablelm": ["STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP", "StableLmConfig"],
    "models.starcoder2": ["STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Starcoder2Config"],
    "models.superpoint": ["SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SuperPointConfig"],
    "models.swiftformer": [
        "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SwiftFormerConfig",
    ],
    "models.swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig"],
    "models.swin2sr": ["SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swin2SRConfig"],
    "models.swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
    "models.switch_transformers": [
        "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "SwitchTransformersConfig",
    ],
    "models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
    "models.table_transformer": [
        "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TableTransformerConfig",
    ],
    "models.tapas": [
        "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TapasConfig",
        "TapasTokenizer",
    ],
    "models.time_series_transformer": [
        "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TimeSeriesTransformerConfig",
    ],
    "models.timesformer": [
        "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TimesformerConfig",
    ],
    "models.timm_backbone": ["TimmBackboneConfig"],
    "models.trocr": [
        "TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TrOCRConfig",
        "TrOCRProcessor",
    ],
    "models.tvlt": [
        "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TvltConfig",
        "TvltFeatureExtractor",
        "TvltProcessor",
    ],
    "models.tvp": [
        "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TvpConfig",
        "TvpProcessor",
    ],
    "models.udop": [
        "UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UdopConfig",
        "UdopProcessor",
    ],
    "models.umt5": ["UMT5Config"],
    "models.unispeech": [
        "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UniSpeechConfig",
    ],
    "models.unispeech_sat": [
        "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UniSpeechSatConfig",
    ],
    "models.univnet": [
        "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "UnivNetConfig",
        "UnivNetFeatureExtractor",
    ],
    "models.upernet": ["UperNetConfig"],
    "models.videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
    "models.vilt": [
        "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ViltConfig",
        "ViltFeatureExtractor",
        "ViltImageProcessor",
        "ViltProcessor",
    ],
    "models.vipllava": [
        "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VipLlavaConfig",
    ],
    "models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"],
    "models.vision_text_dual_encoder": [
        "VisionTextDualEncoderConfig",
        "VisionTextDualEncoderProcessor",
    ],
    "models.visual_bert": [
        "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VisualBertConfig",
    ],
    "models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"],
    "models.vit_hybrid": [
        "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "ViTHybridConfig",
    ],
    "models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"],
    "models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"],
    "models.vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"],
    "models.vitmatte": ["VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitMatteConfig"],
    "models.vits": [
        "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VitsConfig",
        "VitsTokenizer",
    ],
    "models.vivit": [
        "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "VivitConfig",
    ],
    "models.wav2vec2": [
        "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Wav2Vec2Config",
        "Wav2Vec2CTCTokenizer",
        "Wav2Vec2FeatureExtractor",
        "Wav2Vec2Processor",
        "Wav2Vec2Tokenizer",
    ],
    "models.wav2vec2_bert": [
        "WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Wav2Vec2BertConfig",
        "Wav2Vec2BertProcessor",
    ],
    "models.wav2vec2_conformer": [
        "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Wav2Vec2ConformerConfig",
    ],
    "models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"],
    "models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"],
    "models.wavlm": [
        "WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "WavLMConfig",
    ],
    "models.whisper": [
        "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "WhisperConfig",
        "WhisperFeatureExtractor",
        "WhisperProcessor",
        "WhisperTokenizer",
    ],
    "models.x_clip": [
        "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "XCLIPConfig",
        "XCLIPProcessor",
        "XCLIPTextConfig",
        "XCLIPVisionConfig",
    ],
    "models.xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"],
    "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],
    "models.xlm_prophetnet": [
        "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "XLMProphetNetConfig",
    ],
    "models.xlm_roberta": [
        "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "XLMRobertaConfig",
    ],
    "models.xlm_roberta_xl": [
        "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "XLMRobertaXLConfig",
    ],
    "models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"],
    "models.xmod": ["XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig"],
    "models.yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig"],
    "models.yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"],
    "onnx": [],
    "pipelines": [
        "AudioClassificationPipeline",
        "AutomaticSpeechRecognitionPipeline",
        "Conversation",
        "ConversationalPipeline",
        "CsvPipelineDataFormat",
        "DepthEstimationPipeline",
        "DocumentQuestionAnsweringPipeline",
        "FeatureExtractionPipeline",
        "FillMaskPipeline",
        "ImageClassificationPipeline",
        "ImageFeatureExtractionPipeline",
        "ImageSegmentationPipeline",
        "ImageToImagePipeline",
        "ImageToTextPipeline",
        "JsonPipelineDataFormat",
        "MaskGenerationPipeline",
        "NerPipeline",
        "ObjectDetectionPipeline",
        "PipedPipelineDataFormat",
        "Pipeline",
        "PipelineDataFormat",
        "QuestionAnsweringPipeline",
        "SummarizationPipeline",
        "TableQuestionAnsweringPipeline",
        "Text2TextGenerationPipeline",
        "TextClassificationPipeline",
        "TextGenerationPipeline",
        "TextToAudioPipeline",
        "TokenClassificationPipeline",
        "TranslationPipeline",
        "VideoClassificationPipeline",
        "VisualQuestionAnsweringPipeline",
        "ZeroShotAudioClassificationPipeline",
        "ZeroShotClassificationPipeline",
        "ZeroShotImageClassificationPipeline",
        "ZeroShotObjectDetectionPipeline",
        "pipeline",
    ],
    "processing_utils": ["ProcessorMixin"],
    "quantizers": [],
    "testing_utils": [],
    "tokenization_utils": ["PreTrainedTokenizer"],
    "tokenization_utils_base": [
        "AddedToken",
        "BatchEncoding",
        "CharSpan",
        "PreTrainedTokenizerBase",
        "SpecialTokensMixin",
        "TokenSpan",
    ],
    "tools": [
        "Agent",
        "AzureOpenAiAgent",
        "HfAgent",
        "LocalAgent",
        "OpenAiAgent",
        "PipelineTool",
        "RemoteTool",
        "Tool",
        "launch_gradio_demo",
        "load_tool",
    ],
    "trainer_callback": [
        "DefaultFlowCallback",
        "EarlyStoppingCallback",
        "PrinterCallback",
        "ProgressCallback",
        "TrainerCallback",
        "TrainerControl",
        "TrainerState",
    ],
    "trainer_utils": [
        "EvalPrediction",
        "IntervalStrategy",
        "SchedulerType",
        "enable_full_determinism",
        "set_seed",
    ],
    "training_args": ["TrainingArguments"],
    "training_args_seq2seq": ["Seq2SeqTrainingArguments"],
    "training_args_tf": ["TFTrainingArguments"],
    "utils": [
        "CONFIG_NAME",
        "MODEL_CARD_NAME",
        "PYTORCH_PRETRAINED_BERT_CACHE",
        "PYTORCH_TRANSFORMERS_CACHE",
        "SPIECE_UNDERLINE",
        "TF2_WEIGHTS_NAME",
        "TF_WEIGHTS_NAME",
        "TRANSFORMERS_CACHE",
        "WEIGHTS_NAME",
        "TensorType",
        "add_end_docstrings",
        "add_start_docstrings",
        "is_apex_available",
        "is_bitsandbytes_available",
        "is_datasets_available",
        "is_decord_available",
        "is_faiss_available",
        "is_flax_available",
        "is_keras_nlp_available",
        "is_phonemizer_available",
        "is_psutil_available",
        "is_py3nvml_available",
        "is_pyctcdecode_available",
        "is_sacremoses_available",
        "is_safetensors_available",
        "is_scipy_available",
        "is_sentencepiece_available",
        "is_sklearn_available",
        "is_speech_available",
        "is_tensorflow_text_available",
        "is_tf_available",
        "is_timm_available",
        "is_tokenizers_available",
        "is_torch_available",
        "is_torch_neuroncore_available",
        "is_torch_npu_available",
        "is_torch_tpu_available",
        "is_torchvision_available",
        "is_torch_xla_available",
        "is_torch_xpu_available",
        "is_vision_available",
        "logging",
    ],
    "utils.quantization_config": ["AqlmConfig", "AwqConfig", "BitsAndBytesConfig", "GPTQConfig", "QuantoConfig"],
}

# sentencepiece-backed objects
try:
    if not is_sentencepiece_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_sentencepiece_objects

    _import_structure["utils.dummy_sentencepiece_objects"] = [
        name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_")
    ]
else:
    _import_structure["models.albert"].append("AlbertTokenizer")
    _import_structure["models.barthez"].append("BarthezTokenizer")
    _import_structure["models.bartpho"].append("BartphoTokenizer")
    _import_structure["models.bert_generation"].append("BertGenerationTokenizer")
    _import_structure["models.big_bird"].append("BigBirdTokenizer")
    _import_structure["models.camembert"].append("CamembertTokenizer")
    _import_structure["models.code_llama"].append("CodeLlamaTokenizer")
    _import_structure["models.cpm"].append("CpmTokenizer")
    _import_structure["models.deberta_v2"].append("DebertaV2Tokenizer")
    _import_structure["models.ernie_m"].append("ErnieMTokenizer")
    _import_structure["models.fnet"].append("FNetTokenizer")
    _import_structure["models.gemma"].append("GemmaTokenizer")
    _import_structure["models.gpt_sw3"].append("GPTSw3Tokenizer")
    _import_structure["models.layoutxlm"].append("LayoutXLMTokenizer")
    _import_structure["models.llama"].append("LlamaTokenizer")
    _import_structure["models.m2m_100"].append("M2M100Tokenizer")
    _import_structure["models.marian"].append("MarianTokenizer")
    _import_structure["models.mbart"].append("MBartTokenizer")
    _import_structure["models.mbart50"].append("MBart50Tokenizer")
    _import_structure["models.mluke"].append("MLukeTokenizer")
    _import_structure["models.mt5"].append("MT5Tokenizer")
    _import_structure["models.nllb"].append("NllbTokenizer")
    _import_structure["models.pegasus"].append("PegasusTokenizer")
    _import_structure["models.plbart"].append("PLBartTokenizer")
    _import_structure["models.reformer"].append("ReformerTokenizer")
    _import_structure["models.rembert"].append("RemBertTokenizer")
    _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizer")
    _import_structure["models.siglip"].append("SiglipTokenizer")
    _import_structure["models.speech_to_text"].append("Speech2TextTokenizer")
    _import_structure["models.speecht5"].append("SpeechT5Tokenizer")
    _import_structure["models.t5"].append("T5Tokenizer")
    _import_structure["models.udop"].append("UdopTokenizer")
    _import_structure["models.xglm"].append("XGLMTokenizer")
    _import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer")
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer")
    _import_structure["models.xlnet"].append("XLNetTokenizer")

# tokenizers-backed objects
try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_tokenizers_objects

    _import_structure["utils.dummy_tokenizers_objects"] = [
        name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
    ]
else:
    # Fast tokenizers structure
    _import_structure["models.albert"].append("AlbertTokenizerFast")
    _import_structure["models.bart"].append("BartTokenizerFast")
    _import_structure["models.barthez"].append("BarthezTokenizerFast")
    _import_structure["models.bert"].append("BertTokenizerFast")
    _import_structure["models.big_bird"].append("BigBirdTokenizerFast")
    _import_structure["models.blenderbot"].append("BlenderbotTokenizerFast")
    _import_structure["models.blenderbot_small"].append("BlenderbotSmallTokenizerFast")
    _import_structure["models.bloom"].append("BloomTokenizerFast")
    _import_structure["models.camembert"].append("CamembertTokenizerFast")
    _import_structure["models.clip"].append("CLIPTokenizerFast")
    _import_structure["models.code_llama"].append("CodeLlamaTokenizerFast")
    _import_structure["models.codegen"].append("CodeGenTokenizerFast")
    _import_structure["models.cohere"].append("CohereTokenizerFast")
    _import_structure["models.convbert"].append("ConvBertTokenizerFast")
    _import_structure["models.cpm"].append("CpmTokenizerFast")
    _import_structure["models.deberta"].append("DebertaTokenizerFast")
    _import_structure["models.deberta_v2"].append("DebertaV2TokenizerFast")
    _import_structure["models.deprecated.retribert"].append("RetriBertTokenizerFast")
    _import_structure["models.distilbert"].append("DistilBertTokenizerFast")
    _import_structure["models.dpr"].extend(
        [
            "DPRContextEncoderTokenizerFast",
            "DPRQuestionEncoderTokenizerFast",
            "DPRReaderTokenizerFast",
        ]
    )
    _import_structure["models.electra"].append("ElectraTokenizerFast")
    _import_structure["models.fnet"].append("FNetTokenizerFast")
    _import_structure["models.funnel"].append("FunnelTokenizerFast")
    _import_structure["models.gemma"].append("GemmaTokenizerFast")
    _import_structure["models.gpt2"].append("GPT2TokenizerFast")
    _import_structure["models.gpt_neox"].append("GPTNeoXTokenizerFast")
    _import_structure["models.gpt_neox_japanese"].append("GPTNeoXJapaneseTokenizer")
    _import_structure["models.herbert"].append("HerbertTokenizerFast")
    _import_structure["models.layoutlm"].append("LayoutLMTokenizerFast")
    _import_structure["models.layoutlmv2"].append("LayoutLMv2TokenizerFast")
    _import_structure["models.layoutlmv3"].append("LayoutLMv3TokenizerFast")
    _import_structure["models.layoutxlm"].append("LayoutXLMTokenizerFast")
    _import_structure["models.led"].append("LEDTokenizerFast")
    _import_structure["models.llama"].append("LlamaTokenizerFast")
    _import_structure["models.longformer"].append("LongformerTokenizerFast")
    _import_structure["models.lxmert"].append("LxmertTokenizerFast")
    _import_structure["models.markuplm"].append("MarkupLMTokenizerFast")
    _import_structure["models.mbart"].append("MBartTokenizerFast")
    _import_structure["models.mbart50"].append("MBart50TokenizerFast")
    _import_structure["models.mobilebert"].append("MobileBertTokenizerFast")
    _import_structure["models.mpnet"].append("MPNetTokenizerFast")
    _import_structure["models.mt5"].append("MT5TokenizerFast")
    _import_structure["models.mvp"].append("MvpTokenizerFast")
    _import_structure["models.nllb"].append("NllbTokenizerFast")
    _import_structure["models.nougat"].append("NougatTokenizerFast")
    _import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
    _import_structure["models.pegasus"].append("PegasusTokenizerFast")
    _import_structure["models.qwen2"].append("Qwen2TokenizerFast")
    _import_structure["models.realm"].append("RealmTokenizerFast")
    _import_structure["models.reformer"].append("ReformerTokenizerFast")
    _import_structure["models.rembert"].append("RemBertTokenizerFast")
    _import_structure["models.roberta"].append("RobertaTokenizerFast")
    _import_structure["models.roformer"].append("RoFormerTokenizerFast")
    _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizerFast")
    _import_structure["models.splinter"].append("SplinterTokenizerFast")
    _import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast")
    _import_structure["models.t5"].append("T5TokenizerFast")
    _import_structure["models.udop"].append("UdopTokenizerFast")
    _import_structure["models.whisper"].append("WhisperTokenizerFast")
    _import_structure["models.xglm"].append("XGLMTokenizerFast")
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast")
    _import_structure["models.xlnet"].append("XLNetTokenizerFast")
    _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]


try:
    if not (is_sentencepiece_available() and is_tokenizers_available()):
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_sentencepiece_and_tokenizers_objects

    _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [
        name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_")
    ]
else:
    _import_structure["convert_slow_tokenizer"] = [
        "SLOW_TO_FAST_CONVERTERS",
        "convert_slow_tokenizer",
    ]

# Tensorflow-text-specific objects
try:
    if not is_tensorflow_text_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_tensorflow_text_objects

    _import_structure["utils.dummy_tensorflow_text_objects"] = [
        name for name in dir(dummy_tensorflow_text_objects) if not name.startswith("_")
    ]
else:
    _import_structure["models.bert"].append("TFBertTokenizer")

# keras-nlp-specific objects
try:
    if not is_keras_nlp_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_keras_nlp_objects

    _import_structure["utils.dummy_keras_nlp_objects"] = [
        name for name in dir(dummy_keras_nlp_objects) if not name.startswith("_")
    ]
else:
    _import_structure["models.gpt2"].append("TFGPT2Tokenizer")

# Vision-specific objects
try:
    if not is_vision_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_vision_objects

    _import_structure["utils.dummy_vision_objects"] = [
        name for name in dir(dummy_vision_objects) if not name.startswith("_")
    ]
else:
    _import_structure["image_processing_utils"] = ["ImageProcessingMixin"]
    _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
    _import_structure["models.beit"].extend(["BeitFeatureExtractor", "BeitImageProcessor"])
    _import_structure["models.bit"].extend(["BitImageProcessor"])
    _import_structure["models.blip"].extend(["BlipImageProcessor"])
    _import_structure["models.bridgetower"].append("BridgeTowerImageProcessor")
    _import_structure["models.chinese_clip"].extend(["ChineseCLIPFeatureExtractor", "ChineseCLIPImageProcessor"])
    _import_structure["models.clip"].extend(["CLIPFeatureExtractor", "CLIPImageProcessor"])
    _import_structure["models.conditional_detr"].extend(
        ["ConditionalDetrFeatureExtractor", "ConditionalDetrImageProcessor"]
    )
    _import_structure["models.convnext"].extend(["ConvNextFeatureExtractor", "ConvNextImageProcessor"])
    _import_structure["models.deformable_detr"].extend(
        ["DeformableDetrFeatureExtractor", "DeformableDetrImageProcessor"]
    )
    _import_structure["models.deit"].extend(["DeiTFeatureExtractor", "DeiTImageProcessor"])
    _import_structure["models.deta"].append("DetaImageProcessor")
    _import_structure["models.detr"].extend(["DetrFeatureExtractor", "DetrImageProcessor"])
    _import_structure["models.donut"].extend(["DonutFeatureExtractor", "DonutImageProcessor"])
    _import_structure["models.dpt"].extend(["DPTFeatureExtractor", "DPTImageProcessor"])
    _import_structure["models.efficientformer"].append("EfficientFormerImageProcessor")
    _import_structure["models.efficientnet"].append("EfficientNetImageProcessor")
    _import_structure["models.flava"].extend(["FlavaFeatureExtractor", "FlavaImageProcessor", "FlavaProcessor"])
    _import_structure["models.fuyu"].extend(["FuyuImageProcessor", "FuyuProcessor"])
    _import_structure["models.glpn"].extend(["GLPNFeatureExtractor", "GLPNImageProcessor"])
    _import_structure["models.idefics"].extend(["IdeficsImageProcessor"])
    _import_structure["models.imagegpt"].extend(["ImageGPTFeatureExtractor", "ImageGPTImageProcessor"])
    _import_structure["models.layoutlmv2"].extend(["LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor"])
    _import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"])
    _import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"])
    _import_structure["models.llava_next"].append("LlavaNextImageProcessor")
    _import_structure["models.mask2former"].append("Mask2FormerImageProcessor")
    _import_structure["models.maskformer"].extend(["MaskFormerFeatureExtractor", "MaskFormerImageProcessor"])
    _import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
    _import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"])
    _import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"])
    _import_structure["models.nougat"].append("NougatImageProcessor")
    _import_structure["models.oneformer"].extend(["OneFormerImageProcessor"])
    _import_structure["models.owlv2"].append("Owlv2ImageProcessor")
    _import_structure["models.owlvit"].extend(["OwlViTFeatureExtractor", "OwlViTImageProcessor"])
    _import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"])
    _import_structure["models.pix2struct"].extend(["Pix2StructImageProcessor"])
    _import_structure["models.poolformer"].extend(["PoolFormerFeatureExtractor", "PoolFormerImageProcessor"])
    _import_structure["models.pvt"].extend(["PvtImageProcessor"])
    _import_structure["models.sam"].extend(["SamImageProcessor"])
    _import_structure["models.segformer"].extend(["SegformerFeatureExtractor", "SegformerImageProcessor"])
    _import_structure["models.seggpt"].extend(["SegGptImageProcessor"])
    _import_structure["models.siglip"].append("SiglipImageProcessor")
    _import_structure["models.superpoint"].extend(["SuperPointImageProcessor"])
    _import_structure["models.swin2sr"].append("Swin2SRImageProcessor")
    _import_structure["models.tvlt"].append("TvltImageProcessor")
    _import_structure["models.tvp"].append("TvpImageProcessor")
    _import_structure["models.videomae"].extend(["VideoMAEFeatureExtractor", "VideoMAEImageProcessor"])
    _import_structure["models.vilt"].extend(["ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor"])
    _import_structure["models.vit"].extend(["ViTFeatureExtractor", "ViTImageProcessor"])
    _import_structure["models.vit_hybrid"].extend(["ViTHybridImageProcessor"])
    _import_structure["models.vitmatte"].append("VitMatteImageProcessor")
    _import_structure["models.vivit"].append("VivitImageProcessor")
    _import_structure["models.yolos"].extend(["YolosFeatureExtractor", "YolosImageProcessor"])


# PyTorch-backed objects
try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_pt_objects

    _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
    _import_structure["activations"] = []
    _import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
    _import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"]
    _import_structure["cache_utils"] = ["Cache", "DynamicCache", "SinkCache", "StaticCache"]
    _import_structure["data.datasets"] = [
        "GlueDataset",
        "GlueDataTrainingArguments",
        "LineByLineTextDataset",
        "LineByLineWithRefDataset",
        "LineByLineWithSOPTextDataset",
        "SquadDataset",
        "SquadDataTrainingArguments",
        "TextDataset",
        "TextDatasetForNextSentencePrediction",
    ]
    _import_structure["generation"].extend(
        [
            "AlternatingCodebooksLogitsProcessor",
            "BeamScorer",
            "BeamSearchScorer",
            "ClassifierFreeGuidanceLogitsProcessor",
            "ConstrainedBeamSearchScorer",
            "Constraint",
            "ConstraintListState",
            "DisjunctiveConstraint",
            "EncoderNoRepeatNGramLogitsProcessor",
            "EncoderRepetitionPenaltyLogitsProcessor",
            "EpsilonLogitsWarper",
            "EtaLogitsWarper",
            "ExponentialDecayLengthPenalty",
            "ForcedBOSTokenLogitsProcessor",
            "ForcedEOSTokenLogitsProcessor",
            "ForceTokensLogitsProcessor",
            "GenerationMixin",
            "HammingDiversityLogitsProcessor",
            "InfNanRemoveLogitsProcessor",
            "LogitNormalization",
            "LogitsProcessor",
            "LogitsProcessorList",
            "LogitsWarper",
            "MaxLengthCriteria",
            "MaxTimeCriteria",
            "MinLengthLogitsProcessor",
            "MinNewTokensLengthLogitsProcessor",
            "NoBadWordsLogitsProcessor",
            "NoRepeatNGramLogitsProcessor",
            "PhrasalConstraint",
            "PrefixConstrainedLogitsProcessor",
            "RepetitionPenaltyLogitsProcessor",
            "SequenceBiasLogitsProcessor",
            "StoppingCriteria",
            "StoppingCriteriaList",
            "SuppressTokensAtBeginLogitsProcessor",
            "SuppressTokensLogitsProcessor",
            "TemperatureLogitsWarper",
            "TopKLogitsWarper",
            "TopPLogitsWarper",
            "TypicalLogitsWarper",
            "UnbatchedClassifierFreeGuidanceLogitsProcessor",
            "WhisperTimeStampLogitsProcessor",
        ]
    )
    _import_structure["generation_utils"] = []
    _import_structure["modeling_outputs"] = []
    _import_structure["modeling_utils"] = ["PreTrainedModel"]

    # PyTorch models structure

    _import_structure["models.albert"].extend(
        [
            "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AlbertForMaskedLM",
            "AlbertForMultipleChoice",
            "AlbertForPreTraining",
            "AlbertForQuestionAnswering",
            "AlbertForSequenceClassification",
            "AlbertForTokenClassification",
            "AlbertModel",
            "AlbertPreTrainedModel",
            "load_tf_weights_in_albert",
        ]
    )

    _import_structure["models.align"].extend(
        [
            "ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AlignModel",
            "AlignPreTrainedModel",
            "AlignTextModel",
            "AlignVisionModel",
        ]
    )
    _import_structure["models.altclip"].extend(
        [
            "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AltCLIPModel",
            "AltCLIPPreTrainedModel",
            "AltCLIPTextModel",
            "AltCLIPVisionModel",
        ]
    )
    _import_structure["models.audio_spectrogram_transformer"].extend(
        [
            "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ASTForAudioClassification",
            "ASTModel",
            "ASTPreTrainedModel",
        ]
    )
    _import_structure["models.auto"].extend(
        [
            "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
            "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING",
            "MODEL_FOR_AUDIO_XVECTOR_MAPPING",
            "MODEL_FOR_BACKBONE_MAPPING",
            "MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING",
            "MODEL_FOR_CAUSAL_LM_MAPPING",
            "MODEL_FOR_CTC_MAPPING",
            "MODEL_FOR_DEPTH_ESTIMATION_MAPPING",
            "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
            "MODEL_FOR_IMAGE_MAPPING",
            "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING",
            "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING",
            "MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING",
            "MODEL_FOR_KEYPOINT_DETECTION_MAPPING",
            "MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
            "MODEL_FOR_MASKED_LM_MAPPING",
            "MODEL_FOR_MASK_GENERATION_MAPPING",
            "MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "MODEL_FOR_OBJECT_DETECTION_MAPPING",
            "MODEL_FOR_PRETRAINING_MAPPING",
            "MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
            "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
            "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
            "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_TEXT_ENCODING_MAPPING",
            "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING",
            "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING",
            "MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING",
            "MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING",
            "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING",
            "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING",
            "MODEL_FOR_VISION_2_SEQ_MAPPING",
            "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",
            "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING",
            "MODEL_MAPPING",
            "MODEL_WITH_LM_HEAD_MAPPING",
            "AutoBackbone",
            "AutoModel",
            "AutoModelForAudioClassification",
            "AutoModelForAudioFrameClassification",
            "AutoModelForAudioXVector",
            "AutoModelForCausalLM",
            "AutoModelForCTC",
            "AutoModelForDepthEstimation",
            "AutoModelForDocumentQuestionAnswering",
            "AutoModelForImageClassification",
            "AutoModelForImageSegmentation",
            "AutoModelForImageToImage",
            "AutoModelForInstanceSegmentation",
            "AutoModelForKeypointDetection",
            "AutoModelForMaskedImageModeling",
            "AutoModelForMaskedLM",
            "AutoModelForMaskGeneration",
            "AutoModelForMultipleChoice",
            "AutoModelForNextSentencePrediction",
            "AutoModelForObjectDetection",
            "AutoModelForPreTraining",
            "AutoModelForQuestionAnswering",
            "AutoModelForSemanticSegmentation",
            "AutoModelForSeq2SeqLM",
            "AutoModelForSequenceClassification",
            "AutoModelForSpeechSeq2Seq",
            "AutoModelForTableQuestionAnswering",
            "AutoModelForTextEncoding",
            "AutoModelForTextToSpectrogram",
            "AutoModelForTextToWaveform",
            "AutoModelForTokenClassification",
            "AutoModelForUniversalSegmentation",
            "AutoModelForVideoClassification",
            "AutoModelForVision2Seq",
            "AutoModelForVisualQuestionAnswering",
            "AutoModelForZeroShotImageClassification",
            "AutoModelForZeroShotObjectDetection",
            "AutoModelWithLMHead",
        ]
    )
    _import_structure["models.autoformer"].extend(
        [
            "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AutoformerForPrediction",
            "AutoformerModel",
            "AutoformerPreTrainedModel",
        ]
    )
    _import_structure["models.bark"].extend(
        [
            "BARK_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BarkCausalModel",
            "BarkCoarseModel",
            "BarkFineModel",
            "BarkModel",
            "BarkPreTrainedModel",
            "BarkSemanticModel",
        ]
    )
    _import_structure["models.bart"].extend(
        [
            "BART_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BartForCausalLM",
            "BartForConditionalGeneration",
            "BartForQuestionAnswering",
            "BartForSequenceClassification",
            "BartModel",
            "BartPretrainedModel",
            "BartPreTrainedModel",
            "PretrainedBartModel",
        ]
    )
    _import_structure["models.beit"].extend(
        [
            "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BeitBackbone",
            "BeitForImageClassification",
            "BeitForMaskedImageModeling",
            "BeitForSemanticSegmentation",
            "BeitModel",
            "BeitPreTrainedModel",
        ]
    )
    _import_structure["models.bert"].extend(
        [
            "BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BertForMaskedLM",
            "BertForMultipleChoice",
            "BertForNextSentencePrediction",
            "BertForPreTraining",
            "BertForQuestionAnswering",
            "BertForSequenceClassification",
            "BertForTokenClassification",
            "BertLayer",
            "BertLMHeadModel",
            "BertModel",
            "BertPreTrainedModel",
            "load_tf_weights_in_bert",
        ]
    )
    _import_structure["models.bert_generation"].extend(
        [
            "BertGenerationDecoder",
            "BertGenerationEncoder",
            "BertGenerationPreTrainedModel",
            "load_tf_weights_in_bert_generation",
        ]
    )
    _import_structure["models.big_bird"].extend(
        [
            "BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BigBirdForCausalLM",
            "BigBirdForMaskedLM",
            "BigBirdForMultipleChoice",
            "BigBirdForPreTraining",
            "BigBirdForQuestionAnswering",
            "BigBirdForSequenceClassification",
            "BigBirdForTokenClassification",
            "BigBirdLayer",
            "BigBirdModel",
            "BigBirdPreTrainedModel",
            "load_tf_weights_in_big_bird",
        ]
    )
    _import_structure["models.bigbird_pegasus"].extend(
        [
            "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BigBirdPegasusForCausalLM",
            "BigBirdPegasusForConditionalGeneration",
            "BigBirdPegasusForQuestionAnswering",
            "BigBirdPegasusForSequenceClassification",
            "BigBirdPegasusModel",
            "BigBirdPegasusPreTrainedModel",
        ]
    )
    _import_structure["models.biogpt"].extend(
        [
            "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BioGptForCausalLM",
            "BioGptForSequenceClassification",
            "BioGptForTokenClassification",
            "BioGptModel",
            "BioGptPreTrainedModel",
        ]
    )
    _import_structure["models.bit"].extend(
        [
            "BIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BitBackbone",
            "BitForImageClassification",
            "BitModel",
            "BitPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot"].extend(
        [
            "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BlenderbotForCausalLM",
            "BlenderbotForConditionalGeneration",
            "BlenderbotModel",
            "BlenderbotPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot_small"].extend(
        [
            "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BlenderbotSmallForCausalLM",
            "BlenderbotSmallForConditionalGeneration",
            "BlenderbotSmallModel",
            "BlenderbotSmallPreTrainedModel",
        ]
    )
    _import_structure["models.blip"].extend(
        [
            "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BlipForConditionalGeneration",
            "BlipForImageTextRetrieval",
            "BlipForQuestionAnswering",
            "BlipModel",
            "BlipPreTrainedModel",
            "BlipTextModel",
            "BlipVisionModel",
        ]
    )
    _import_structure["models.blip_2"].extend(
        [
            "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Blip2ForConditionalGeneration",
            "Blip2Model",
            "Blip2PreTrainedModel",
            "Blip2QFormerModel",
            "Blip2VisionModel",
        ]
    )
    _import_structure["models.bloom"].extend(
        [
            "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BloomForCausalLM",
            "BloomForQuestionAnswering",
            "BloomForSequenceClassification",
            "BloomForTokenClassification",
            "BloomModel",
            "BloomPreTrainedModel",
        ]
    )
    _import_structure["models.bridgetower"].extend(
        [
            "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BridgeTowerForContrastiveLearning",
            "BridgeTowerForImageAndTextRetrieval",
            "BridgeTowerForMaskedLM",
            "BridgeTowerModel",
            "BridgeTowerPreTrainedModel",
        ]
    )
    _import_structure["models.bros"].extend(
        [
            "BROS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BrosForTokenClassification",
            "BrosModel",
            "BrosPreTrainedModel",
            "BrosProcessor",
            "BrosSpadeEEForTokenClassification",
            "BrosSpadeELForTokenClassification",
        ]
    )
    _import_structure["models.camembert"].extend(
        [
            "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CamembertForCausalLM",
            "CamembertForMaskedLM",
            "CamembertForMultipleChoice",
            "CamembertForQuestionAnswering",
            "CamembertForSequenceClassification",
            "CamembertForTokenClassification",
            "CamembertModel",
            "CamembertPreTrainedModel",
        ]
    )
    _import_structure["models.canine"].extend(
        [
            "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CanineForMultipleChoice",
            "CanineForQuestionAnswering",
            "CanineForSequenceClassification",
            "CanineForTokenClassification",
            "CanineLayer",
            "CanineModel",
            "CaninePreTrainedModel",
            "load_tf_weights_in_canine",
        ]
    )
    _import_structure["models.chinese_clip"].extend(
        [
            "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ChineseCLIPModel",
            "ChineseCLIPPreTrainedModel",
            "ChineseCLIPTextModel",
            "ChineseCLIPVisionModel",
        ]
    )
    _import_structure["models.clap"].extend(
        [
            "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ClapAudioModel",
            "ClapAudioModelWithProjection",
            "ClapFeatureExtractor",
            "ClapModel",
            "ClapPreTrainedModel",
            "ClapTextModel",
            "ClapTextModelWithProjection",
        ]
    )
    _import_structure["models.clip"].extend(
        [
            "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CLIPForImageClassification",
            "CLIPModel",
            "CLIPPreTrainedModel",
            "CLIPTextModel",
            "CLIPTextModelWithProjection",
            "CLIPVisionModel",
            "CLIPVisionModelWithProjection",
        ]
    )
    _import_structure["models.clipseg"].extend(
        [
            "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CLIPSegForImageSegmentation",
            "CLIPSegModel",
            "CLIPSegPreTrainedModel",
            "CLIPSegTextModel",
            "CLIPSegVisionModel",
        ]
    )
    _import_structure["models.clvp"].extend(
        [
            "CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ClvpDecoder",
            "ClvpEncoder",
            "ClvpForCausalLM",
            "ClvpModel",
            "ClvpModelForConditionalGeneration",
            "ClvpPreTrainedModel",
        ]
    )
    _import_structure["models.codegen"].extend(
        [
            "CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CodeGenForCausalLM",
            "CodeGenModel",
            "CodeGenPreTrainedModel",
        ]
    )
    _import_structure["models.cohere"].extend(["CohereForCausalLM", "CohereModel", "CoherePreTrainedModel"])
    _import_structure["models.conditional_detr"].extend(
        [
            "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConditionalDetrForObjectDetection",
            "ConditionalDetrForSegmentation",
            "ConditionalDetrModel",
            "ConditionalDetrPreTrainedModel",
        ]
    )
    _import_structure["models.convbert"].extend(
        [
            "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvBertForMaskedLM",
            "ConvBertForMultipleChoice",
            "ConvBertForQuestionAnswering",
            "ConvBertForSequenceClassification",
            "ConvBertForTokenClassification",
            "ConvBertLayer",
            "ConvBertModel",
            "ConvBertPreTrainedModel",
            "load_tf_weights_in_convbert",
        ]
    )
    _import_structure["models.convnext"].extend(
        [
            "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvNextBackbone",
            "ConvNextForImageClassification",
            "ConvNextModel",
            "ConvNextPreTrainedModel",
        ]
    )
    _import_structure["models.convnextv2"].extend(
        [
            "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvNextV2Backbone",
            "ConvNextV2ForImageClassification",
            "ConvNextV2Model",
            "ConvNextV2PreTrainedModel",
        ]
    )
    _import_structure["models.cpmant"].extend(
        [
            "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CpmAntForCausalLM",
            "CpmAntModel",
            "CpmAntPreTrainedModel",
        ]
    )
    _import_structure["models.ctrl"].extend(
        [
            "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CTRLForSequenceClassification",
            "CTRLLMHeadModel",
            "CTRLModel",
            "CTRLPreTrainedModel",
        ]
    )
    _import_structure["models.cvt"].extend(
        [
            "CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CvtForImageClassification",
            "CvtModel",
            "CvtPreTrainedModel",
        ]
    )
    _import_structure["models.data2vec"].extend(
        [
            "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Data2VecAudioForAudioFrameClassification",
            "Data2VecAudioForCTC",
            "Data2VecAudioForSequenceClassification",
            "Data2VecAudioForXVector",
            "Data2VecAudioModel",
            "Data2VecAudioPreTrainedModel",
            "Data2VecTextForCausalLM",
            "Data2VecTextForMaskedLM",
            "Data2VecTextForMultipleChoice",
            "Data2VecTextForQuestionAnswering",
            "Data2VecTextForSequenceClassification",
            "Data2VecTextForTokenClassification",
            "Data2VecTextModel",
            "Data2VecTextPreTrainedModel",
            "Data2VecVisionForImageClassification",
            "Data2VecVisionForSemanticSegmentation",
            "Data2VecVisionModel",
            "Data2VecVisionPreTrainedModel",
        ]
    )
    _import_structure["models.deberta"].extend(
        [
            "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DebertaForMaskedLM",
            "DebertaForQuestionAnswering",
            "DebertaForSequenceClassification",
            "DebertaForTokenClassification",
            "DebertaModel",
            "DebertaPreTrainedModel",
        ]
    )
    _import_structure["models.deberta_v2"].extend(
        [
            "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DebertaV2ForMaskedLM",
            "DebertaV2ForMultipleChoice",
            "DebertaV2ForQuestionAnswering",
            "DebertaV2ForSequenceClassification",
            "DebertaV2ForTokenClassification",
            "DebertaV2Model",
            "DebertaV2PreTrainedModel",
        ]
    )
    _import_structure["models.decision_transformer"].extend(
        [
            "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DecisionTransformerGPT2Model",
            "DecisionTransformerGPT2PreTrainedModel",
            "DecisionTransformerModel",
            "DecisionTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.deformable_detr"].extend(
        [
            "DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DeformableDetrForObjectDetection",
            "DeformableDetrModel",
            "DeformableDetrPreTrainedModel",
        ]
    )
    _import_structure["models.deit"].extend(
        [
            "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DeiTForImageClassification",
            "DeiTForImageClassificationWithTeacher",
            "DeiTForMaskedImageModeling",
            "DeiTModel",
            "DeiTPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.mctct"].extend(
        [
            "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MCTCTForCTC",
            "MCTCTModel",
            "MCTCTPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"])
    _import_structure["models.deprecated.open_llama"].extend(
        [
            "OpenLlamaForCausalLM",
            "OpenLlamaForSequenceClassification",
            "OpenLlamaModel",
            "OpenLlamaPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.retribert"].extend(
        [
            "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RetriBertModel",
            "RetriBertPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.trajectory_transformer"].extend(
        [
            "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TrajectoryTransformerModel",
            "TrajectoryTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.transfo_xl"].extend(
        [
            "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AdaptiveEmbedding",
            "TransfoXLForSequenceClassification",
            "TransfoXLLMHeadModel",
            "TransfoXLModel",
            "TransfoXLPreTrainedModel",
            "load_tf_weights_in_transfo_xl",
        ]
    )
    _import_structure["models.deprecated.van"].extend(
        [
            "VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VanForImageClassification",
            "VanModel",
            "VanPreTrainedModel",
        ]
    )
    _import_structure["models.depth_anything"].extend(
        [
            "DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DepthAnythingForDepthEstimation",
            "DepthAnythingPreTrainedModel",
        ]
    )
    _import_structure["models.deta"].extend(
        [
            "DETA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DetaForObjectDetection",
            "DetaModel",
            "DetaPreTrainedModel",
        ]
    )
    _import_structure["models.detr"].extend(
        [
            "DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DetrForObjectDetection",
            "DetrForSegmentation",
            "DetrModel",
            "DetrPreTrainedModel",
        ]
    )
    _import_structure["models.dinat"].extend(
        [
            "DINAT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DinatBackbone",
            "DinatForImageClassification",
            "DinatModel",
            "DinatPreTrainedModel",
        ]
    )
    _import_structure["models.dinov2"].extend(
        [
            "DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Dinov2Backbone",
            "Dinov2ForImageClassification",
            "Dinov2Model",
            "Dinov2PreTrainedModel",
        ]
    )
    _import_structure["models.distilbert"].extend(
        [
            "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DistilBertForMaskedLM",
            "DistilBertForMultipleChoice",
            "DistilBertForQuestionAnswering",
            "DistilBertForSequenceClassification",
            "DistilBertForTokenClassification",
            "DistilBertModel",
            "DistilBertPreTrainedModel",
        ]
    )
    _import_structure["models.donut"].extend(
        [
            "DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DonutSwinModel",
            "DonutSwinPreTrainedModel",
        ]
    )
    _import_structure["models.dpr"].extend(
        [
            "DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPRContextEncoder",
            "DPRPretrainedContextEncoder",
            "DPRPreTrainedModel",
            "DPRPretrainedQuestionEncoder",
            "DPRPretrainedReader",
            "DPRQuestionEncoder",
            "DPRReader",
        ]
    )
    _import_structure["models.dpt"].extend(
        [
            "DPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPTForDepthEstimation",
            "DPTForSemanticSegmentation",
            "DPTModel",
            "DPTPreTrainedModel",
        ]
    )
    _import_structure["models.efficientformer"].extend(
        [
            "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EfficientFormerForImageClassification",
            "EfficientFormerForImageClassificationWithTeacher",
            "EfficientFormerModel",
            "EfficientFormerPreTrainedModel",
        ]
    )
    _import_structure["models.efficientnet"].extend(
        [
            "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EfficientNetForImageClassification",
            "EfficientNetModel",
            "EfficientNetPreTrainedModel",
        ]
    )
    _import_structure["models.electra"].extend(
        [
            "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ElectraForCausalLM",
            "ElectraForMaskedLM",
            "ElectraForMultipleChoice",
            "ElectraForPreTraining",
            "ElectraForQuestionAnswering",
            "ElectraForSequenceClassification",
            "ElectraForTokenClassification",
            "ElectraModel",
            "ElectraPreTrainedModel",
            "load_tf_weights_in_electra",
        ]
    )
    _import_structure["models.encodec"].extend(
        [
            "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EncodecModel",
            "EncodecPreTrainedModel",
        ]
    )
    _import_structure["models.encoder_decoder"].append("EncoderDecoderModel")
    _import_structure["models.ernie"].extend(
        [
            "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ErnieForCausalLM",
            "ErnieForMaskedLM",
            "ErnieForMultipleChoice",
            "ErnieForNextSentencePrediction",
            "ErnieForPreTraining",
            "ErnieForQuestionAnswering",
            "ErnieForSequenceClassification",
            "ErnieForTokenClassification",
            "ErnieModel",
            "ErniePreTrainedModel",
        ]
    )
    _import_structure["models.ernie_m"].extend(
        [
            "ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ErnieMForInformationExtraction",
            "ErnieMForMultipleChoice",
            "ErnieMForQuestionAnswering",
            "ErnieMForSequenceClassification",
            "ErnieMForTokenClassification",
            "ErnieMModel",
            "ErnieMPreTrainedModel",
        ]
    )
    _import_structure["models.esm"].extend(
        [
            "ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "EsmFoldPreTrainedModel",
            "EsmForMaskedLM",
            "EsmForProteinFolding",
            "EsmForSequenceClassification",
            "EsmForTokenClassification",
            "EsmModel",
            "EsmPreTrainedModel",
        ]
    )
    _import_structure["models.falcon"].extend(
        [
            "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FalconForCausalLM",
            "FalconForQuestionAnswering",
            "FalconForSequenceClassification",
            "FalconForTokenClassification",
            "FalconModel",
            "FalconPreTrainedModel",
        ]
    )
    _import_structure["models.fastspeech2_conformer"].extend(
        [
            "FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FastSpeech2ConformerHifiGan",
            "FastSpeech2ConformerModel",
            "FastSpeech2ConformerPreTrainedModel",
            "FastSpeech2ConformerWithHifiGan",
        ]
    )
    _import_structure["models.flaubert"].extend(
        [
            "FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FlaubertForMultipleChoice",
            "FlaubertForQuestionAnswering",
            "FlaubertForQuestionAnsweringSimple",
            "FlaubertForSequenceClassification",
            "FlaubertForTokenClassification",
            "FlaubertModel",
            "FlaubertPreTrainedModel",
            "FlaubertWithLMHeadModel",
        ]
    )
    _import_structure["models.flava"].extend(
        [
            "FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FlavaForPreTraining",
            "FlavaImageCodebook",
            "FlavaImageModel",
            "FlavaModel",
            "FlavaMultimodalModel",
            "FlavaPreTrainedModel",
            "FlavaTextModel",
        ]
    )
    _import_structure["models.fnet"].extend(
        [
            "FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FNetForMaskedLM",
            "FNetForMultipleChoice",
            "FNetForNextSentencePrediction",
            "FNetForPreTraining",
            "FNetForQuestionAnswering",
            "FNetForSequenceClassification",
            "FNetForTokenClassification",
            "FNetLayer",
            "FNetModel",
            "FNetPreTrainedModel",
        ]
    )
    _import_structure["models.focalnet"].extend(
        [
            "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FocalNetBackbone",
            "FocalNetForImageClassification",
            "FocalNetForMaskedImageModeling",
            "FocalNetModel",
            "FocalNetPreTrainedModel",
        ]
    )
    _import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
    _import_structure["models.funnel"].extend(
        [
            "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FunnelBaseModel",
            "FunnelForMaskedLM",
            "FunnelForMultipleChoice",
            "FunnelForPreTraining",
            "FunnelForQuestionAnswering",
            "FunnelForSequenceClassification",
            "FunnelForTokenClassification",
            "FunnelModel",
            "FunnelPreTrainedModel",
            "load_tf_weights_in_funnel",
        ]
    )
    _import_structure["models.fuyu"].extend(["FuyuForCausalLM", "FuyuPreTrainedModel"])
    _import_structure["models.gemma"].extend(
        [
            "GemmaForCausalLM",
            "GemmaForSequenceClassification",
            "GemmaModel",
            "GemmaPreTrainedModel",
        ]
    )
    _import_structure["models.git"].extend(
        [
            "GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GitForCausalLM",
            "GitModel",
            "GitPreTrainedModel",
            "GitVisionModel",
        ]
    )
    _import_structure["models.glpn"].extend(
        [
            "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GLPNForDepthEstimation",
            "GLPNModel",
            "GLPNPreTrainedModel",
        ]
    )
    _import_structure["models.gpt2"].extend(
        [
            "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPT2DoubleHeadsModel",
            "GPT2ForQuestionAnswering",
            "GPT2ForSequenceClassification",
            "GPT2ForTokenClassification",
            "GPT2LMHeadModel",
            "GPT2Model",
            "GPT2PreTrainedModel",
            "load_tf_weights_in_gpt2",
        ]
    )
    _import_structure["models.gpt_bigcode"].extend(
        [
            "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTBigCodeForCausalLM",
            "GPTBigCodeForSequenceClassification",
            "GPTBigCodeForTokenClassification",
            "GPTBigCodeModel",
            "GPTBigCodePreTrainedModel",
        ]
    )
    _import_structure["models.gpt_neo"].extend(
        [
            "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTNeoForCausalLM",
            "GPTNeoForQuestionAnswering",
            "GPTNeoForSequenceClassification",
            "GPTNeoForTokenClassification",
            "GPTNeoModel",
            "GPTNeoPreTrainedModel",
            "load_tf_weights_in_gpt_neo",
        ]
    )
    _import_structure["models.gpt_neox"].extend(
        [
            "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTNeoXForCausalLM",
            "GPTNeoXForQuestionAnswering",
            "GPTNeoXForSequenceClassification",
            "GPTNeoXForTokenClassification",
            "GPTNeoXLayer",
            "GPTNeoXModel",
            "GPTNeoXPreTrainedModel",
        ]
    )
    _import_structure["models.gpt_neox_japanese"].extend(
        [
            "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTNeoXJapaneseForCausalLM",
            "GPTNeoXJapaneseLayer",
            "GPTNeoXJapaneseModel",
            "GPTNeoXJapanesePreTrainedModel",
        ]
    )
    _import_structure["models.gptj"].extend(
        [
            "GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTJForCausalLM",
            "GPTJForQuestionAnswering",
            "GPTJForSequenceClassification",
            "GPTJModel",
            "GPTJPreTrainedModel",
        ]
    )
    _import_structure["models.gptsan_japanese"].extend(
        [
            "GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTSanJapaneseForConditionalGeneration",
            "GPTSanJapaneseModel",
            "GPTSanJapanesePreTrainedModel",
        ]
    )
    _import_structure["models.graphormer"].extend(
        [
            "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GraphormerForGraphClassification",
            "GraphormerModel",
            "GraphormerPreTrainedModel",
        ]
    )
    _import_structure["models.groupvit"].extend(
        [
            "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GroupViTModel",
            "GroupViTPreTrainedModel",
            "GroupViTTextModel",
            "GroupViTVisionModel",
        ]
    )
    _import_structure["models.hubert"].extend(
        [
            "HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "HubertForCTC",
            "HubertForSequenceClassification",
            "HubertModel",
            "HubertPreTrainedModel",
        ]
    )
    _import_structure["models.ibert"].extend(
        [
            "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "IBertForMaskedLM",
            "IBertForMultipleChoice",
            "IBertForQuestionAnswering",
            "IBertForSequenceClassification",
            "IBertForTokenClassification",
            "IBertModel",
            "IBertPreTrainedModel",
        ]
    )
    _import_structure["models.idefics"].extend(
        [
            "IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "IdeficsForVisionText2Text",
            "IdeficsModel",
            "IdeficsPreTrainedModel",
            "IdeficsProcessor",
        ]
    )
    _import_structure["models.imagegpt"].extend(
        [
            "IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ImageGPTForCausalImageModeling",
            "ImageGPTForImageClassification",
            "ImageGPTModel",
            "ImageGPTPreTrainedModel",
            "load_tf_weights_in_imagegpt",
        ]
    )
    _import_structure["models.informer"].extend(
        [
            "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "InformerForPrediction",
            "InformerModel",
            "InformerPreTrainedModel",
        ]
    )
    _import_structure["models.instructblip"].extend(
        [
            "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "InstructBlipForConditionalGeneration",
            "InstructBlipPreTrainedModel",
            "InstructBlipQFormerModel",
            "InstructBlipVisionModel",
        ]
    )
    _import_structure["models.jukebox"].extend(
        [
            "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST",
            "JukeboxModel",
            "JukeboxPreTrainedModel",
            "JukeboxPrior",
            "JukeboxVQVAE",
        ]
    )
    _import_structure["models.kosmos2"].extend(
        [
            "KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Kosmos2ForConditionalGeneration",
            "Kosmos2Model",
            "Kosmos2PreTrainedModel",
        ]
    )
    _import_structure["models.layoutlm"].extend(
        [
            "LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMForMaskedLM",
            "LayoutLMForQuestionAnswering",
            "LayoutLMForSequenceClassification",
            "LayoutLMForTokenClassification",
            "LayoutLMModel",
            "LayoutLMPreTrainedModel",
        ]
    )
    _import_structure["models.layoutlmv2"].extend(
        [
            "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMv2ForQuestionAnswering",
            "LayoutLMv2ForSequenceClassification",
            "LayoutLMv2ForTokenClassification",
            "LayoutLMv2Model",
            "LayoutLMv2PreTrainedModel",
        ]
    )
    _import_structure["models.layoutlmv3"].extend(
        [
            "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMv3ForQuestionAnswering",
            "LayoutLMv3ForSequenceClassification",
            "LayoutLMv3ForTokenClassification",
            "LayoutLMv3Model",
            "LayoutLMv3PreTrainedModel",
        ]
    )
    _import_structure["models.led"].extend(
        [
            "LED_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LEDForConditionalGeneration",
            "LEDForQuestionAnswering",
            "LEDForSequenceClassification",
            "LEDModel",
            "LEDPreTrainedModel",
        ]
    )
    _import_structure["models.levit"].extend(
        [
            "LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LevitForImageClassification",
            "LevitForImageClassificationWithTeacher",
            "LevitModel",
            "LevitPreTrainedModel",
        ]
    )
    _import_structure["models.lilt"].extend(
        [
            "LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LiltForQuestionAnswering",
            "LiltForSequenceClassification",
            "LiltForTokenClassification",
            "LiltModel",
            "LiltPreTrainedModel",
        ]
    )
    _import_structure["models.llama"].extend(
        [
            "LlamaForCausalLM",
            "LlamaForQuestionAnswering",
            "LlamaForSequenceClassification",
            "LlamaModel",
            "LlamaPreTrainedModel",
        ]
    )
    _import_structure["models.llava"].extend(
        [
            "LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LlavaForConditionalGeneration",
            "LlavaPreTrainedModel",
        ]
    )
    _import_structure["models.llava_next"].extend(
        [
            "LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LlavaNextForConditionalGeneration",
            "LlavaNextPreTrainedModel",
        ]
    )
    _import_structure["models.longformer"].extend(
        [
            "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LongformerForMaskedLM",
            "LongformerForMultipleChoice",
            "LongformerForQuestionAnswering",
            "LongformerForSequenceClassification",
            "LongformerForTokenClassification",
            "LongformerModel",
            "LongformerPreTrainedModel",
            "LongformerSelfAttention",
        ]
    )
    _import_structure["models.longt5"].extend(
        [
            "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LongT5EncoderModel",
            "LongT5ForConditionalGeneration",
            "LongT5Model",
            "LongT5PreTrainedModel",
        ]
    )
    _import_structure["models.luke"].extend(
        [
            "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LukeForEntityClassification",
            "LukeForEntityPairClassification",
            "LukeForEntitySpanClassification",
            "LukeForMaskedLM",
            "LukeForMultipleChoice",
            "LukeForQuestionAnswering",
            "LukeForSequenceClassification",
            "LukeForTokenClassification",
            "LukeModel",
            "LukePreTrainedModel",
        ]
    )
    _import_structure["models.lxmert"].extend(
        [
            "LxmertEncoder",
            "LxmertForPreTraining",
            "LxmertForQuestionAnswering",
            "LxmertModel",
            "LxmertPreTrainedModel",
            "LxmertVisualFeatureEncoder",
            "LxmertXLayer",
        ]
    )
    _import_structure["models.m2m_100"].extend(
        [
            "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
            "M2M100ForConditionalGeneration",
            "M2M100Model",
            "M2M100PreTrainedModel",
        ]
    )
    _import_structure["models.mamba"].extend(
        [
            "MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MambaForCausalLM",
            "MambaModel",
            "MambaPreTrainedModel",
        ]
    )
    _import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"])
    _import_structure["models.markuplm"].extend(
        [
            "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MarkupLMForQuestionAnswering",
            "MarkupLMForSequenceClassification",
            "MarkupLMForTokenClassification",
            "MarkupLMModel",
            "MarkupLMPreTrainedModel",
        ]
    )
    _import_structure["models.mask2former"].extend(
        [
            "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Mask2FormerForUniversalSegmentation",
            "Mask2FormerModel",
            "Mask2FormerPreTrainedModel",
        ]
    )
    _import_structure["models.maskformer"].extend(
        [
            "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MaskFormerForInstanceSegmentation",
            "MaskFormerModel",
            "MaskFormerPreTrainedModel",
            "MaskFormerSwinBackbone",
        ]
    )
    _import_structure["models.mbart"].extend(
        [
            "MBartForCausalLM",
            "MBartForConditionalGeneration",
            "MBartForQuestionAnswering",
            "MBartForSequenceClassification",
            "MBartModel",
            "MBartPreTrainedModel",
        ]
    )
    _import_structure["models.mega"].extend(
        [
            "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MegaForCausalLM",
            "MegaForMaskedLM",
            "MegaForMultipleChoice",
            "MegaForQuestionAnswering",
            "MegaForSequenceClassification",
            "MegaForTokenClassification",
            "MegaModel",
            "MegaPreTrainedModel",
        ]
    )
    _import_structure["models.megatron_bert"].extend(
        [
            "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MegatronBertForCausalLM",
            "MegatronBertForMaskedLM",
            "MegatronBertForMultipleChoice",
            "MegatronBertForNextSentencePrediction",
            "MegatronBertForPreTraining",
            "MegatronBertForQuestionAnswering",
            "MegatronBertForSequenceClassification",
            "MegatronBertForTokenClassification",
            "MegatronBertModel",
            "MegatronBertPreTrainedModel",
        ]
    )
    _import_structure["models.mgp_str"].extend(
        [
            "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MgpstrForSceneTextRecognition",
            "MgpstrModel",
            "MgpstrPreTrainedModel",
        ]
    )
    _import_structure["models.mistral"].extend(
        [
            "MistralForCausalLM",
            "MistralForSequenceClassification",
            "MistralModel",
            "MistralPreTrainedModel",
        ]
    )
    _import_structure["models.mixtral"].extend(
        ["MixtralForCausalLM", "MixtralForSequenceClassification", "MixtralModel", "MixtralPreTrainedModel"]
    )
    _import_structure["models.mobilebert"].extend(
        [
            "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileBertForMaskedLM",
            "MobileBertForMultipleChoice",
            "MobileBertForNextSentencePrediction",
            "MobileBertForPreTraining",
            "MobileBertForQuestionAnswering",
            "MobileBertForSequenceClassification",
            "MobileBertForTokenClassification",
            "MobileBertLayer",
            "MobileBertModel",
            "MobileBertPreTrainedModel",
            "load_tf_weights_in_mobilebert",
        ]
    )
    _import_structure["models.mobilenet_v1"].extend(
        [
            "MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileNetV1ForImageClassification",
            "MobileNetV1Model",
            "MobileNetV1PreTrainedModel",
            "load_tf_weights_in_mobilenet_v1",
        ]
    )
    _import_structure["models.mobilenet_v2"].extend(
        [
            "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileNetV2ForImageClassification",
            "MobileNetV2ForSemanticSegmentation",
            "MobileNetV2Model",
            "MobileNetV2PreTrainedModel",
            "load_tf_weights_in_mobilenet_v2",
        ]
    )
    _import_structure["models.mobilevit"].extend(
        [
            "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileViTForImageClassification",
            "MobileViTForSemanticSegmentation",
            "MobileViTModel",
            "MobileViTPreTrainedModel",
        ]
    )
    _import_structure["models.mobilevitv2"].extend(
        [
            "MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileViTV2ForImageClassification",
            "MobileViTV2ForSemanticSegmentation",
            "MobileViTV2Model",
            "MobileViTV2PreTrainedModel",
        ]
    )
    _import_structure["models.mpnet"].extend(
        [
            "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MPNetForMaskedLM",
            "MPNetForMultipleChoice",
            "MPNetForQuestionAnswering",
            "MPNetForSequenceClassification",
            "MPNetForTokenClassification",
            "MPNetLayer",
            "MPNetModel",
            "MPNetPreTrainedModel",
        ]
    )
    _import_structure["models.mpt"].extend(
        [
            "MPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MptForCausalLM",
            "MptForQuestionAnswering",
            "MptForSequenceClassification",
            "MptForTokenClassification",
            "MptModel",
            "MptPreTrainedModel",
        ]
    )
    _import_structure["models.mra"].extend(
        [
            "MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MraForMaskedLM",
            "MraForMultipleChoice",
            "MraForQuestionAnswering",
            "MraForSequenceClassification",
            "MraForTokenClassification",
            "MraModel",
            "MraPreTrainedModel",
        ]
    )
    _import_structure["models.mt5"].extend(
        [
            "MT5EncoderModel",
            "MT5ForConditionalGeneration",
            "MT5ForQuestionAnswering",
            "MT5ForSequenceClassification",
            "MT5ForTokenClassification",
            "MT5Model",
            "MT5PreTrainedModel",
        ]
    )
    _import_structure["models.musicgen"].extend(
        [
            "MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MusicgenForCausalLM",
            "MusicgenForConditionalGeneration",
            "MusicgenModel",
            "MusicgenPreTrainedModel",
            "MusicgenProcessor",
        ]
    )
    _import_structure["models.musicgen_melody"].extend(
        [
            "MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MusicgenMelodyForCausalLM",
            "MusicgenMelodyForConditionalGeneration",
            "MusicgenMelodyModel",
            "MusicgenMelodyPreTrainedModel",
        ]
    )
    _import_structure["models.mvp"].extend(
        [
            "MVP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MvpForCausalLM",
            "MvpForConditionalGeneration",
            "MvpForQuestionAnswering",
            "MvpForSequenceClassification",
            "MvpModel",
            "MvpPreTrainedModel",
        ]
    )
    _import_structure["models.nat"].extend(
        [
            "NAT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "NatBackbone",
            "NatForImageClassification",
            "NatModel",
            "NatPreTrainedModel",
        ]
    )
    _import_structure["models.nezha"].extend(
        [
            "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "NezhaForMaskedLM",
            "NezhaForMultipleChoice",
            "NezhaForNextSentencePrediction",
            "NezhaForPreTraining",
            "NezhaForQuestionAnswering",
            "NezhaForSequenceClassification",
            "NezhaForTokenClassification",
            "NezhaModel",
            "NezhaPreTrainedModel",
        ]
    )
    _import_structure["models.nllb_moe"].extend(
        [
            "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "NllbMoeForConditionalGeneration",
            "NllbMoeModel",
            "NllbMoePreTrainedModel",
            "NllbMoeSparseMLP",
            "NllbMoeTop2Router",
        ]
    )
    _import_structure["models.nystromformer"].extend(
        [
            "NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "NystromformerForMaskedLM",
            "NystromformerForMultipleChoice",
            "NystromformerForQuestionAnswering",
            "NystromformerForSequenceClassification",
            "NystromformerForTokenClassification",
            "NystromformerLayer",
            "NystromformerModel",
            "NystromformerPreTrainedModel",
        ]
    )
    _import_structure["models.oneformer"].extend(
        [
            "ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "OneFormerForUniversalSegmentation",
            "OneFormerModel",
            "OneFormerPreTrainedModel",
        ]
    )
    _import_structure["models.openai"].extend(
        [
            "OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "OpenAIGPTDoubleHeadsModel",
            "OpenAIGPTForSequenceClassification",
            "OpenAIGPTLMHeadModel",
            "OpenAIGPTModel",
            "OpenAIGPTPreTrainedModel",
            "load_tf_weights_in_openai_gpt",
        ]
    )
    _import_structure["models.opt"].extend(
        [
            "OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "OPTForCausalLM",
            "OPTForQuestionAnswering",
            "OPTForSequenceClassification",
            "OPTModel",
            "OPTPreTrainedModel",
        ]
    )
    _import_structure["models.owlv2"].extend(
        [
            "OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Owlv2ForObjectDetection",
            "Owlv2Model",
            "Owlv2PreTrainedModel",
            "Owlv2TextModel",
            "Owlv2VisionModel",
        ]
    )
    _import_structure["models.owlvit"].extend(
        [
            "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "OwlViTForObjectDetection",
            "OwlViTModel",
            "OwlViTPreTrainedModel",
            "OwlViTTextModel",
            "OwlViTVisionModel",
        ]
    )
    _import_structure["models.patchtsmixer"].extend(
        [
            "PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PatchTSMixerForPrediction",
            "PatchTSMixerForPretraining",
            "PatchTSMixerForRegression",
            "PatchTSMixerForTimeSeriesClassification",
            "PatchTSMixerModel",
            "PatchTSMixerPreTrainedModel",
        ]
    )
    _import_structure["models.patchtst"].extend(
        [
            "PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PatchTSTForClassification",
            "PatchTSTForPrediction",
            "PatchTSTForPretraining",
            "PatchTSTForRegression",
            "PatchTSTModel",
            "PatchTSTPreTrainedModel",
        ]
    )
    _import_structure["models.pegasus"].extend(
        [
            "PegasusForCausalLM",
            "PegasusForConditionalGeneration",
            "PegasusModel",
            "PegasusPreTrainedModel",
        ]
    )
    _import_structure["models.pegasus_x"].extend(
        [
            "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PegasusXForConditionalGeneration",
            "PegasusXModel",
            "PegasusXPreTrainedModel",
        ]
    )
    _import_structure["models.perceiver"].extend(
        [
            "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PerceiverForImageClassificationConvProcessing",
            "PerceiverForImageClassificationFourier",
            "PerceiverForImageClassificationLearned",
            "PerceiverForMaskedLM",
            "PerceiverForMultimodalAutoencoding",
            "PerceiverForOpticalFlow",
            "PerceiverForSequenceClassification",
            "PerceiverLayer",
            "PerceiverModel",
            "PerceiverPreTrainedModel",
        ]
    )
    _import_structure["models.persimmon"].extend(
        [
            "PersimmonForCausalLM",
            "PersimmonForSequenceClassification",
            "PersimmonModel",
            "PersimmonPreTrainedModel",
        ]
    )
    _import_structure["models.phi"].extend(
        [
            "PHI_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PhiForCausalLM",
            "PhiForSequenceClassification",
            "PhiForTokenClassification",
            "PhiModel",
            "PhiPreTrainedModel",
        ]
    )
    _import_structure["models.pix2struct"].extend(
        [
            "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Pix2StructForConditionalGeneration",
            "Pix2StructPreTrainedModel",
            "Pix2StructTextModel",
            "Pix2StructVisionModel",
        ]
    )
    _import_structure["models.plbart"].extend(
        [
            "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PLBartForCausalLM",
            "PLBartForConditionalGeneration",
            "PLBartForSequenceClassification",
            "PLBartModel",
            "PLBartPreTrainedModel",
        ]
    )
    _import_structure["models.poolformer"].extend(
        [
            "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PoolFormerForImageClassification",
            "PoolFormerModel",
            "PoolFormerPreTrainedModel",
        ]
    )
    _import_structure["models.pop2piano"].extend(
        [
            "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Pop2PianoForConditionalGeneration",
            "Pop2PianoPreTrainedModel",
        ]
    )
    _import_structure["models.prophetnet"].extend(
        [
            "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ProphetNetDecoder",
            "ProphetNetEncoder",
            "ProphetNetForCausalLM",
            "ProphetNetForConditionalGeneration",
            "ProphetNetModel",
            "ProphetNetPreTrainedModel",
        ]
    )
    _import_structure["models.pvt"].extend(
        [
            "PVT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PvtForImageClassification",
            "PvtModel",
            "PvtPreTrainedModel",
        ]
    )
    _import_structure["models.pvt_v2"].extend(
        [
            "PVT_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "PvtV2Backbone",
            "PvtV2ForImageClassification",
            "PvtV2Model",
            "PvtV2PreTrainedModel",
        ]
    )
    _import_structure["models.qdqbert"].extend(
        [
            "QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "QDQBertForMaskedLM",
            "QDQBertForMultipleChoice",
            "QDQBertForNextSentencePrediction",
            "QDQBertForQuestionAnswering",
            "QDQBertForSequenceClassification",
            "QDQBertForTokenClassification",
            "QDQBertLayer",
            "QDQBertLMHeadModel",
            "QDQBertModel",
            "QDQBertPreTrainedModel",
            "load_tf_weights_in_qdqbert",
        ]
    )
    _import_structure["models.qwen2"].extend(
        [
            "Qwen2ForCausalLM",
            "Qwen2ForSequenceClassification",
            "Qwen2Model",
            "Qwen2PreTrainedModel",
        ]
    )
    _import_structure["models.rag"].extend(
        [
            "RagModel",
            "RagPreTrainedModel",
            "RagSequenceForGeneration",
            "RagTokenForGeneration",
        ]
    )
    _import_structure["models.realm"].extend(
        [
            "REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RealmEmbedder",
            "RealmForOpenQA",
            "RealmKnowledgeAugEncoder",
            "RealmPreTrainedModel",
            "RealmReader",
            "RealmRetriever",
            "RealmScorer",
            "load_tf_weights_in_realm",
        ]
    )
    _import_structure["models.reformer"].extend(
        [
            "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ReformerAttention",
            "ReformerForMaskedLM",
            "ReformerForQuestionAnswering",
            "ReformerForSequenceClassification",
            "ReformerLayer",
            "ReformerModel",
            "ReformerModelWithLMHead",
            "ReformerPreTrainedModel",
        ]
    )
    _import_structure["models.regnet"].extend(
        [
            "REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RegNetForImageClassification",
            "RegNetModel",
            "RegNetPreTrainedModel",
        ]
    )
    _import_structure["models.rembert"].extend(
        [
            "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RemBertForCausalLM",
            "RemBertForMaskedLM",
            "RemBertForMultipleChoice",
            "RemBertForQuestionAnswering",
            "RemBertForSequenceClassification",
            "RemBertForTokenClassification",
            "RemBertLayer",
            "RemBertModel",
            "RemBertPreTrainedModel",
            "load_tf_weights_in_rembert",
        ]
    )
    _import_structure["models.resnet"].extend(
        [
            "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ResNetBackbone",
            "ResNetForImageClassification",
            "ResNetModel",
            "ResNetPreTrainedModel",
        ]
    )
    _import_structure["models.roberta"].extend(
        [
            "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RobertaForCausalLM",
            "RobertaForMaskedLM",
            "RobertaForMultipleChoice",
            "RobertaForQuestionAnswering",
            "RobertaForSequenceClassification",
            "RobertaForTokenClassification",
            "RobertaModel",
            "RobertaPreTrainedModel",
        ]
    )
    _import_structure["models.roberta_prelayernorm"].extend(
        [
            "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RobertaPreLayerNormForCausalLM",
            "RobertaPreLayerNormForMaskedLM",
            "RobertaPreLayerNormForMultipleChoice",
            "RobertaPreLayerNormForQuestionAnswering",
            "RobertaPreLayerNormForSequenceClassification",
            "RobertaPreLayerNormForTokenClassification",
            "RobertaPreLayerNormModel",
            "RobertaPreLayerNormPreTrainedModel",
        ]
    )
    _import_structure["models.roc_bert"].extend(
        [
            "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RoCBertForCausalLM",
            "RoCBertForMaskedLM",
            "RoCBertForMultipleChoice",
            "RoCBertForPreTraining",
            "RoCBertForQuestionAnswering",
            "RoCBertForSequenceClassification",
            "RoCBertForTokenClassification",
            "RoCBertLayer",
            "RoCBertModel",
            "RoCBertPreTrainedModel",
            "load_tf_weights_in_roc_bert",
        ]
    )
    _import_structure["models.roformer"].extend(
        [
            "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RoFormerForCausalLM",
            "RoFormerForMaskedLM",
            "RoFormerForMultipleChoice",
            "RoFormerForQuestionAnswering",
            "RoFormerForSequenceClassification",
            "RoFormerForTokenClassification",
            "RoFormerLayer",
            "RoFormerModel",
            "RoFormerPreTrainedModel",
            "load_tf_weights_in_roformer",
        ]
    )
    _import_structure["models.rwkv"].extend(
        [
            "RWKV_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RwkvForCausalLM",
            "RwkvModel",
            "RwkvPreTrainedModel",
        ]
    )
    _import_structure["models.sam"].extend(
        [
            "SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SamModel",
            "SamPreTrainedModel",
        ]
    )
    _import_structure["models.seamless_m4t"].extend(
        [
            "SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SeamlessM4TCodeHifiGan",
            "SeamlessM4TForSpeechToSpeech",
            "SeamlessM4TForSpeechToText",
            "SeamlessM4TForTextToSpeech",
            "SeamlessM4TForTextToText",
            "SeamlessM4THifiGan",
            "SeamlessM4TModel",
            "SeamlessM4TPreTrainedModel",
            "SeamlessM4TTextToUnitForConditionalGeneration",
            "SeamlessM4TTextToUnitModel",
        ]
    )
    _import_structure["models.seamless_m4t_v2"].extend(
        [
            "SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SeamlessM4Tv2ForSpeechToSpeech",
            "SeamlessM4Tv2ForSpeechToText",
            "SeamlessM4Tv2ForTextToSpeech",
            "SeamlessM4Tv2ForTextToText",
            "SeamlessM4Tv2Model",
            "SeamlessM4Tv2PreTrainedModel",
        ]
    )
    _import_structure["models.segformer"].extend(
        [
            "SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SegformerDecodeHead",
            "SegformerForImageClassification",
            "SegformerForSemanticSegmentation",
            "SegformerLayer",
            "SegformerModel",
            "SegformerPreTrainedModel",
        ]
    )
    _import_structure["models.seggpt"].extend(
        [
            "SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SegGptForImageSegmentation",
            "SegGptModel",
            "SegGptPreTrainedModel",
        ]
    )
    _import_structure["models.sew"].extend(
        [
            "SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SEWForCTC",
            "SEWForSequenceClassification",
            "SEWModel",
            "SEWPreTrainedModel",
        ]
    )
    _import_structure["models.sew_d"].extend(
        [
            "SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SEWDForCTC",
            "SEWDForSequenceClassification",
            "SEWDModel",
            "SEWDPreTrainedModel",
        ]
    )
    _import_structure["models.siglip"].extend(
        [
            "SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SiglipForImageClassification",
            "SiglipModel",
            "SiglipPreTrainedModel",
            "SiglipTextModel",
            "SiglipVisionModel",
        ]
    )
    _import_structure["models.speech_encoder_decoder"].extend(["SpeechEncoderDecoderModel"])
    _import_structure["models.speech_to_text"].extend(
        [
            "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Speech2TextForConditionalGeneration",
            "Speech2TextModel",
            "Speech2TextPreTrainedModel",
        ]
    )
    _import_structure["models.speech_to_text_2"].extend(["Speech2Text2ForCausalLM", "Speech2Text2PreTrainedModel"])
    _import_structure["models.speecht5"].extend(
        [
            "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SpeechT5ForSpeechToSpeech",
            "SpeechT5ForSpeechToText",
            "SpeechT5ForTextToSpeech",
            "SpeechT5HifiGan",
            "SpeechT5Model",
            "SpeechT5PreTrainedModel",
        ]
    )
    _import_structure["models.splinter"].extend(
        [
            "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SplinterForPreTraining",
            "SplinterForQuestionAnswering",
            "SplinterLayer",
            "SplinterModel",
            "SplinterPreTrainedModel",
        ]
    )
    _import_structure["models.squeezebert"].extend(
        [
            "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SqueezeBertForMaskedLM",
            "SqueezeBertForMultipleChoice",
            "SqueezeBertForQuestionAnswering",
            "SqueezeBertForSequenceClassification",
            "SqueezeBertForTokenClassification",
            "SqueezeBertModel",
            "SqueezeBertModule",
            "SqueezeBertPreTrainedModel",
        ]
    )
    _import_structure["models.stablelm"].extend(
        [
            "StableLmForCausalLM",
            "StableLmForSequenceClassification",
            "StableLmModel",
            "StableLmPreTrainedModel",
        ]
    )
    _import_structure["models.starcoder2"].extend(
        [
            "Starcoder2ForCausalLM",
            "Starcoder2ForSequenceClassification",
            "Starcoder2Model",
            "Starcoder2PreTrainedModel",
        ]
    )
    _import_structure["models.superpoint"].extend(
        [
            "SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SuperPointForKeypointDetection",
            "SuperPointPreTrainedModel",
        ]
    )
    _import_structure["models.swiftformer"].extend(
        [
            "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SwiftFormerForImageClassification",
            "SwiftFormerModel",
            "SwiftFormerPreTrainedModel",
        ]
    )
    _import_structure["models.swin"].extend(
        [
            "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SwinBackbone",
            "SwinForImageClassification",
            "SwinForMaskedImageModeling",
            "SwinModel",
            "SwinPreTrainedModel",
        ]
    )
    _import_structure["models.swin2sr"].extend(
        [
            "SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Swin2SRForImageSuperResolution",
            "Swin2SRModel",
            "Swin2SRPreTrainedModel",
        ]
    )
    _import_structure["models.swinv2"].extend(
        [
            "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Swinv2Backbone",
            "Swinv2ForImageClassification",
            "Swinv2ForMaskedImageModeling",
            "Swinv2Model",
            "Swinv2PreTrainedModel",
        ]
    )
    _import_structure["models.switch_transformers"].extend(
        [
            "SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SwitchTransformersEncoderModel",
            "SwitchTransformersForConditionalGeneration",
            "SwitchTransformersModel",
            "SwitchTransformersPreTrainedModel",
            "SwitchTransformersSparseMLP",
            "SwitchTransformersTop1Router",
        ]
    )
    _import_structure["models.t5"].extend(
        [
            "T5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "T5EncoderModel",
            "T5ForConditionalGeneration",
            "T5ForQuestionAnswering",
            "T5ForSequenceClassification",
            "T5ForTokenClassification",
            "T5Model",
            "T5PreTrainedModel",
            "load_tf_weights_in_t5",
        ]
    )
    _import_structure["models.table_transformer"].extend(
        [
            "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TableTransformerForObjectDetection",
            "TableTransformerModel",
            "TableTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.tapas"].extend(
        [
            "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TapasForMaskedLM",
            "TapasForQuestionAnswering",
            "TapasForSequenceClassification",
            "TapasModel",
            "TapasPreTrainedModel",
            "load_tf_weights_in_tapas",
        ]
    )
    _import_structure["models.time_series_transformer"].extend(
        [
            "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TimeSeriesTransformerForPrediction",
            "TimeSeriesTransformerModel",
            "TimeSeriesTransformerPreTrainedModel",
        ]
    )
    _import_structure["models.timesformer"].extend(
        [
            "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TimesformerForVideoClassification",
            "TimesformerModel",
            "TimesformerPreTrainedModel",
        ]
    )
    _import_structure["models.timm_backbone"].extend(["TimmBackbone"])
    _import_structure["models.trocr"].extend(
        [
            "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TrOCRForCausalLM",
            "TrOCRPreTrainedModel",
        ]
    )
    _import_structure["models.tvlt"].extend(
        [
            "TVLT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TvltForAudioVisualClassification",
            "TvltForPreTraining",
            "TvltModel",
            "TvltPreTrainedModel",
        ]
    )
    _import_structure["models.tvp"].extend(
        [
            "TVP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TvpForVideoGrounding",
            "TvpModel",
            "TvpPreTrainedModel",
        ]
    )
    _import_structure["models.udop"].extend(
        [
            "UDOP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UdopEncoderModel",
            "UdopForConditionalGeneration",
            "UdopModel",
            "UdopPreTrainedModel",
        ],
    )
    _import_structure["models.umt5"].extend(
        [
            "UMT5EncoderModel",
            "UMT5ForConditionalGeneration",
            "UMT5ForQuestionAnswering",
            "UMT5ForSequenceClassification",
            "UMT5ForTokenClassification",
            "UMT5Model",
            "UMT5PreTrainedModel",
        ]
    )
    _import_structure["models.unispeech"].extend(
        [
            "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UniSpeechForCTC",
            "UniSpeechForPreTraining",
            "UniSpeechForSequenceClassification",
            "UniSpeechModel",
            "UniSpeechPreTrainedModel",
        ]
    )
    _import_structure["models.unispeech_sat"].extend(
        [
            "UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UniSpeechSatForAudioFrameClassification",
            "UniSpeechSatForCTC",
            "UniSpeechSatForPreTraining",
            "UniSpeechSatForSequenceClassification",
            "UniSpeechSatForXVector",
            "UniSpeechSatModel",
            "UniSpeechSatPreTrainedModel",
        ]
    )
    _import_structure["models.univnet"].extend(
        [
            "UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "UnivNetModel",
        ]
    )
    _import_structure["models.upernet"].extend(
        [
            "UperNetForSemanticSegmentation",
            "UperNetPreTrainedModel",
        ]
    )
    _import_structure["models.videomae"].extend(
        [
            "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VideoMAEForPreTraining",
            "VideoMAEForVideoClassification",
            "VideoMAEModel",
            "VideoMAEPreTrainedModel",
        ]
    )
    _import_structure["models.vilt"].extend(
        [
            "VILT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViltForImageAndTextRetrieval",
            "ViltForImagesAndTextClassification",
            "ViltForMaskedLM",
            "ViltForQuestionAnswering",
            "ViltForTokenClassification",
            "ViltLayer",
            "ViltModel",
            "ViltPreTrainedModel",
        ]
    )
    _import_structure["models.vipllava"].extend(
        [
            "VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VipLlavaForConditionalGeneration",
            "VipLlavaPreTrainedModel",
        ]
    )
    _import_structure["models.vision_encoder_decoder"].extend(["VisionEncoderDecoderModel"])
    _import_structure["models.vision_text_dual_encoder"].extend(["VisionTextDualEncoderModel"])
    _import_structure["models.visual_bert"].extend(
        [
            "VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VisualBertForMultipleChoice",
            "VisualBertForPreTraining",
            "VisualBertForQuestionAnswering",
            "VisualBertForRegionToPhraseAlignment",
            "VisualBertForVisualReasoning",
            "VisualBertLayer",
            "VisualBertModel",
            "VisualBertPreTrainedModel",
        ]
    )
    _import_structure["models.vit"].extend(
        [
            "VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViTForImageClassification",
            "ViTForMaskedImageModeling",
            "ViTModel",
            "ViTPreTrainedModel",
        ]
    )
    _import_structure["models.vit_hybrid"].extend(
        [
            "VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViTHybridForImageClassification",
            "ViTHybridModel",
            "ViTHybridPreTrainedModel",
        ]
    )
    _import_structure["models.vit_mae"].extend(
        [
            "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViTMAEForPreTraining",
            "ViTMAELayer",
            "ViTMAEModel",
            "ViTMAEPreTrainedModel",
        ]
    )
    _import_structure["models.vit_msn"].extend(
        [
            "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViTMSNForImageClassification",
            "ViTMSNModel",
            "ViTMSNPreTrainedModel",
        ]
    )
    _import_structure["models.vitdet"].extend(
        [
            "VITDET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VitDetBackbone",
            "VitDetModel",
            "VitDetPreTrainedModel",
        ]
    )
    _import_structure["models.vitmatte"].extend(
        [
            "VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VitMatteForImageMatting",
            "VitMattePreTrainedModel",
        ]
    )
    _import_structure["models.vits"].extend(
        [
            "VITS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VitsModel",
            "VitsPreTrainedModel",
        ]
    )
    _import_structure["models.vivit"].extend(
        [
            "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "VivitForVideoClassification",
            "VivitModel",
            "VivitPreTrainedModel",
        ]
    )
    _import_structure["models.wav2vec2"].extend(
        [
            "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Wav2Vec2ForAudioFrameClassification",
            "Wav2Vec2ForCTC",
            "Wav2Vec2ForMaskedLM",
            "Wav2Vec2ForPreTraining",
            "Wav2Vec2ForSequenceClassification",
            "Wav2Vec2ForXVector",
            "Wav2Vec2Model",
            "Wav2Vec2PreTrainedModel",
        ]
    )
    _import_structure["models.wav2vec2_bert"].extend(
        [
            "WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Wav2Vec2BertForAudioFrameClassification",
            "Wav2Vec2BertForCTC",
            "Wav2Vec2BertForSequenceClassification",
            "Wav2Vec2BertForXVector",
            "Wav2Vec2BertModel",
            "Wav2Vec2BertPreTrainedModel",
        ]
    )
    _import_structure["models.wav2vec2_conformer"].extend(
        [
            "WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Wav2Vec2ConformerForAudioFrameClassification",
            "Wav2Vec2ConformerForCTC",
            "Wav2Vec2ConformerForPreTraining",
            "Wav2Vec2ConformerForSequenceClassification",
            "Wav2Vec2ConformerForXVector",
            "Wav2Vec2ConformerModel",
            "Wav2Vec2ConformerPreTrainedModel",
        ]
    )
    _import_structure["models.wavlm"].extend(
        [
            "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "WavLMForAudioFrameClassification",
            "WavLMForCTC",
            "WavLMForSequenceClassification",
            "WavLMForXVector",
            "WavLMModel",
            "WavLMPreTrainedModel",
        ]
    )
    _import_structure["models.whisper"].extend(
        [
            "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "WhisperForAudioClassification",
            "WhisperForCausalLM",
            "WhisperForConditionalGeneration",
            "WhisperModel",
            "WhisperPreTrainedModel",
        ]
    )
    _import_structure["models.x_clip"].extend(
        [
            "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XCLIPModel",
            "XCLIPPreTrainedModel",
            "XCLIPTextModel",
            "XCLIPVisionModel",
        ]
    )
    _import_structure["models.xglm"].extend(
        [
            "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XGLMForCausalLM",
            "XGLMModel",
            "XGLMPreTrainedModel",
        ]
    )
    _import_structure["models.xlm"].extend(
        [
            "XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMForMultipleChoice",
            "XLMForQuestionAnswering",
            "XLMForQuestionAnsweringSimple",
            "XLMForSequenceClassification",
            "XLMForTokenClassification",
            "XLMModel",
            "XLMPreTrainedModel",
            "XLMWithLMHeadModel",
        ]
    )
    _import_structure["models.xlm_prophetnet"].extend(
        [
            "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMProphetNetDecoder",
            "XLMProphetNetEncoder",
            "XLMProphetNetForCausalLM",
            "XLMProphetNetForConditionalGeneration",
            "XLMProphetNetModel",
            "XLMProphetNetPreTrainedModel",
        ]
    )
    _import_structure["models.xlm_roberta"].extend(
        [
            "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMRobertaForCausalLM",
            "XLMRobertaForMaskedLM",
            "XLMRobertaForMultipleChoice",
            "XLMRobertaForQuestionAnswering",
            "XLMRobertaForSequenceClassification",
            "XLMRobertaForTokenClassification",
            "XLMRobertaModel",
            "XLMRobertaPreTrainedModel",
        ]
    )
    _import_structure["models.xlm_roberta_xl"].extend(
        [
            "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMRobertaXLForCausalLM",
            "XLMRobertaXLForMaskedLM",
            "XLMRobertaXLForMultipleChoice",
            "XLMRobertaXLForQuestionAnswering",
            "XLMRobertaXLForSequenceClassification",
            "XLMRobertaXLForTokenClassification",
            "XLMRobertaXLModel",
            "XLMRobertaXLPreTrainedModel",
        ]
    )
    _import_structure["models.xlnet"].extend(
        [
            "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLNetForMultipleChoice",
            "XLNetForQuestionAnswering",
            "XLNetForQuestionAnsweringSimple",
            "XLNetForSequenceClassification",
            "XLNetForTokenClassification",
            "XLNetLMHeadModel",
            "XLNetModel",
            "XLNetPreTrainedModel",
            "load_tf_weights_in_xlnet",
        ]
    )
    _import_structure["models.xmod"].extend(
        [
            "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XmodForCausalLM",
            "XmodForMaskedLM",
            "XmodForMultipleChoice",
            "XmodForQuestionAnswering",
            "XmodForSequenceClassification",
            "XmodForTokenClassification",
            "XmodModel",
            "XmodPreTrainedModel",
        ]
    )
    _import_structure["models.yolos"].extend(
        [
            "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "YolosForObjectDetection",
            "YolosModel",
            "YolosPreTrainedModel",
        ]
    )
    _import_structure["models.yoso"].extend(
        [
            "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "YosoForMaskedLM",
            "YosoForMultipleChoice",
            "YosoForQuestionAnswering",
            "YosoForSequenceClassification",
            "YosoForTokenClassification",
            "YosoLayer",
            "YosoModel",
            "YosoPreTrainedModel",
        ]
    )
    _import_structure["optimization"] = [
        "Adafactor",
        "AdamW",
        "get_constant_schedule",
        "get_constant_schedule_with_warmup",
        "get_cosine_schedule_with_warmup",
        "get_cosine_with_hard_restarts_schedule_with_warmup",
        "get_inverse_sqrt_schedule",
        "get_linear_schedule_with_warmup",
        "get_polynomial_decay_schedule_with_warmup",
        "get_scheduler",
    ]
    _import_structure["pytorch_utils"] = [
        "Conv1D",
        "apply_chunking_to_forward",
        "prune_layer",
    ]
    _import_structure["sagemaker"] = []
    _import_structure["time_series_utils"] = []
    _import_structure["trainer"] = ["Trainer"]
    _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
    _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]

# TensorFlow-backed objects
try:
    if not is_tf_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_tf_objects

    _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]
else:
    _import_structure["activations_tf"] = []
    _import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"]
    _import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"]
    _import_structure["generation"].extend(
        [
            "TFForcedBOSTokenLogitsProcessor",
            "TFForcedEOSTokenLogitsProcessor",
            "TFForceTokensLogitsProcessor",
            "TFGenerationMixin",
            "TFLogitsProcessor",
            "TFLogitsProcessorList",
            "TFLogitsWarper",
            "TFMinLengthLogitsProcessor",
            "TFNoBadWordsLogitsProcessor",
            "TFNoRepeatNGramLogitsProcessor",
            "TFRepetitionPenaltyLogitsProcessor",
            "TFSuppressTokensAtBeginLogitsProcessor",
            "TFSuppressTokensLogitsProcessor",
            "TFTemperatureLogitsWarper",
            "TFTopKLogitsWarper",
            "TFTopPLogitsWarper",
        ]
    )
    _import_structure["generation_tf_utils"] = []
    _import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"]
    _import_structure["modeling_tf_outputs"] = []
    _import_structure["modeling_tf_utils"] = [
        "TFPreTrainedModel",
        "TFSequenceSummary",
        "TFSharedEmbeddings",
        "shape_list",
    ]
    # TensorFlow models structure
    _import_structure["models.albert"].extend(
        [
            "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAlbertForMaskedLM",
            "TFAlbertForMultipleChoice",
            "TFAlbertForPreTraining",
            "TFAlbertForQuestionAnswering",
            "TFAlbertForSequenceClassification",
            "TFAlbertForTokenClassification",
            "TFAlbertMainLayer",
            "TFAlbertModel",
            "TFAlbertPreTrainedModel",
        ]
    )
    _import_structure["models.auto"].extend(
        [
            "TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
            "TF_MODEL_FOR_CAUSAL_LM_MAPPING",
            "TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
            "TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
            "TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
            "TF_MODEL_FOR_MASKED_LM_MAPPING",
            "TF_MODEL_FOR_MASK_GENERATION_MAPPING",
            "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "TF_MODEL_FOR_PRETRAINING_MAPPING",
            "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
            "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
            "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
            "TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
            "TF_MODEL_FOR_TEXT_ENCODING_MAPPING",
            "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "TF_MODEL_FOR_VISION_2_SEQ_MAPPING",
            "TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",
            "TF_MODEL_MAPPING",
            "TF_MODEL_WITH_LM_HEAD_MAPPING",
            "TFAutoModel",
            "TFAutoModelForAudioClassification",
            "TFAutoModelForCausalLM",
            "TFAutoModelForDocumentQuestionAnswering",
            "TFAutoModelForImageClassification",
            "TFAutoModelForMaskedImageModeling",
            "TFAutoModelForMaskedLM",
            "TFAutoModelForMaskGeneration",
            "TFAutoModelForMultipleChoice",
            "TFAutoModelForNextSentencePrediction",
            "TFAutoModelForPreTraining",
            "TFAutoModelForQuestionAnswering",
            "TFAutoModelForSemanticSegmentation",
            "TFAutoModelForSeq2SeqLM",
            "TFAutoModelForSequenceClassification",
            "TFAutoModelForSpeechSeq2Seq",
            "TFAutoModelForTableQuestionAnswering",
            "TFAutoModelForTextEncoding",
            "TFAutoModelForTokenClassification",
            "TFAutoModelForVision2Seq",
            "TFAutoModelForZeroShotImageClassification",
            "TFAutoModelWithLMHead",
        ]
    )
    _import_structure["models.bart"].extend(
        [
            "TFBartForConditionalGeneration",
            "TFBartForSequenceClassification",
            "TFBartModel",
            "TFBartPretrainedModel",
        ]
    )
    _import_structure["models.bert"].extend(
        [
            "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFBertEmbeddings",
            "TFBertForMaskedLM",
            "TFBertForMultipleChoice",
            "TFBertForNextSentencePrediction",
            "TFBertForPreTraining",
            "TFBertForQuestionAnswering",
            "TFBertForSequenceClassification",
            "TFBertForTokenClassification",
            "TFBertLMHeadModel",
            "TFBertMainLayer",
            "TFBertModel",
            "TFBertPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot"].extend(
        [
            "TFBlenderbotForConditionalGeneration",
            "TFBlenderbotModel",
            "TFBlenderbotPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot_small"].extend(
        [
            "TFBlenderbotSmallForConditionalGeneration",
            "TFBlenderbotSmallModel",
            "TFBlenderbotSmallPreTrainedModel",
        ]
    )
    _import_structure["models.blip"].extend(
        [
            "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFBlipForConditionalGeneration",
            "TFBlipForImageTextRetrieval",
            "TFBlipForQuestionAnswering",
            "TFBlipModel",
            "TFBlipPreTrainedModel",
            "TFBlipTextModel",
            "TFBlipVisionModel",
        ]
    )
    _import_structure["models.camembert"].extend(
        [
            "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCamembertForCausalLM",
            "TFCamembertForMaskedLM",
            "TFCamembertForMultipleChoice",
            "TFCamembertForQuestionAnswering",
            "TFCamembertForSequenceClassification",
            "TFCamembertForTokenClassification",
            "TFCamembertModel",
            "TFCamembertPreTrainedModel",
        ]
    )
    _import_structure["models.clip"].extend(
        [
            "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCLIPModel",
            "TFCLIPPreTrainedModel",
            "TFCLIPTextModel",
            "TFCLIPVisionModel",
        ]
    )
    _import_structure["models.convbert"].extend(
        [
            "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFConvBertForMaskedLM",
            "TFConvBertForMultipleChoice",
            "TFConvBertForQuestionAnswering",
            "TFConvBertForSequenceClassification",
            "TFConvBertForTokenClassification",
            "TFConvBertLayer",
            "TFConvBertModel",
            "TFConvBertPreTrainedModel",
        ]
    )
    _import_structure["models.convnext"].extend(
        [
            "TFConvNextForImageClassification",
            "TFConvNextModel",
            "TFConvNextPreTrainedModel",
        ]
    )
    _import_structure["models.convnextv2"].extend(
        [
            "TFConvNextV2ForImageClassification",
            "TFConvNextV2Model",
            "TFConvNextV2PreTrainedModel",
        ]
    )
    _import_structure["models.ctrl"].extend(
        [
            "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCTRLForSequenceClassification",
            "TFCTRLLMHeadModel",
            "TFCTRLModel",
            "TFCTRLPreTrainedModel",
        ]
    )
    _import_structure["models.cvt"].extend(
        [
            "TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCvtForImageClassification",
            "TFCvtModel",
            "TFCvtPreTrainedModel",
        ]
    )
    _import_structure["models.data2vec"].extend(
        [
            "TFData2VecVisionForImageClassification",
            "TFData2VecVisionForSemanticSegmentation",
            "TFData2VecVisionModel",
            "TFData2VecVisionPreTrainedModel",
        ]
    )
    _import_structure["models.deberta"].extend(
        [
            "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDebertaForMaskedLM",
            "TFDebertaForQuestionAnswering",
            "TFDebertaForSequenceClassification",
            "TFDebertaForTokenClassification",
            "TFDebertaModel",
            "TFDebertaPreTrainedModel",
        ]
    )
    _import_structure["models.deberta_v2"].extend(
        [
            "TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDebertaV2ForMaskedLM",
            "TFDebertaV2ForMultipleChoice",
            "TFDebertaV2ForQuestionAnswering",
            "TFDebertaV2ForSequenceClassification",
            "TFDebertaV2ForTokenClassification",
            "TFDebertaV2Model",
            "TFDebertaV2PreTrainedModel",
        ]
    )
    _import_structure["models.deit"].extend(
        [
            "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDeiTForImageClassification",
            "TFDeiTForImageClassificationWithTeacher",
            "TFDeiTForMaskedImageModeling",
            "TFDeiTModel",
            "TFDeiTPreTrainedModel",
        ]
    )
    _import_structure["models.deprecated.transfo_xl"].extend(
        [
            "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAdaptiveEmbedding",
            "TFTransfoXLForSequenceClassification",
            "TFTransfoXLLMHeadModel",
            "TFTransfoXLMainLayer",
            "TFTransfoXLModel",
            "TFTransfoXLPreTrainedModel",
        ]
    )
    _import_structure["models.distilbert"].extend(
        [
            "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDistilBertForMaskedLM",
            "TFDistilBertForMultipleChoice",
            "TFDistilBertForQuestionAnswering",
            "TFDistilBertForSequenceClassification",
            "TFDistilBertForTokenClassification",
            "TFDistilBertMainLayer",
            "TFDistilBertModel",
            "TFDistilBertPreTrainedModel",
        ]
    )
    _import_structure["models.dpr"].extend(
        [
            "TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDPRContextEncoder",
            "TFDPRPretrainedContextEncoder",
            "TFDPRPretrainedQuestionEncoder",
            "TFDPRPretrainedReader",
            "TFDPRQuestionEncoder",
            "TFDPRReader",
        ]
    )
    _import_structure["models.efficientformer"].extend(
        [
            "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFEfficientFormerForImageClassification",
            "TFEfficientFormerForImageClassificationWithTeacher",
            "TFEfficientFormerModel",
            "TFEfficientFormerPreTrainedModel",
        ]
    )
    _import_structure["models.electra"].extend(
        [
            "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFElectraForMaskedLM",
            "TFElectraForMultipleChoice",
            "TFElectraForPreTraining",
            "TFElectraForQuestionAnswering",
            "TFElectraForSequenceClassification",
            "TFElectraForTokenClassification",
            "TFElectraModel",
            "TFElectraPreTrainedModel",
        ]
    )
    _import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel")
    _import_structure["models.esm"].extend(
        [
            "ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFEsmForMaskedLM",
            "TFEsmForSequenceClassification",
            "TFEsmForTokenClassification",
            "TFEsmModel",
            "TFEsmPreTrainedModel",
        ]
    )
    _import_structure["models.flaubert"].extend(
        [
            "TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFlaubertForMultipleChoice",
            "TFFlaubertForQuestionAnsweringSimple",
            "TFFlaubertForSequenceClassification",
            "TFFlaubertForTokenClassification",
            "TFFlaubertModel",
            "TFFlaubertPreTrainedModel",
            "TFFlaubertWithLMHeadModel",
        ]
    )
    _import_structure["models.funnel"].extend(
        [
            "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFunnelBaseModel",
            "TFFunnelForMaskedLM",
            "TFFunnelForMultipleChoice",
            "TFFunnelForPreTraining",
            "TFFunnelForQuestionAnswering",
            "TFFunnelForSequenceClassification",
            "TFFunnelForTokenClassification",
            "TFFunnelModel",
            "TFFunnelPreTrainedModel",
        ]
    )
    _import_structure["models.gpt2"].extend(
        [
            "TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFGPT2DoubleHeadsModel",
            "TFGPT2ForSequenceClassification",
            "TFGPT2LMHeadModel",
            "TFGPT2MainLayer",
            "TFGPT2Model",
            "TFGPT2PreTrainedModel",
        ]
    )
    _import_structure["models.gptj"].extend(
        [
            "TFGPTJForCausalLM",
            "TFGPTJForQuestionAnswering",
            "TFGPTJForSequenceClassification",
            "TFGPTJModel",
            "TFGPTJPreTrainedModel",
        ]
    )
    _import_structure["models.groupvit"].extend(
        [
            "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFGroupViTModel",
            "TFGroupViTPreTrainedModel",
            "TFGroupViTTextModel",
            "TFGroupViTVisionModel",
        ]
    )
    _import_structure["models.hubert"].extend(
        [
            "TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFHubertForCTC",
            "TFHubertModel",
            "TFHubertPreTrainedModel",
        ]
    )
    _import_structure["models.layoutlm"].extend(
        [
            "TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLayoutLMForMaskedLM",
            "TFLayoutLMForQuestionAnswering",
            "TFLayoutLMForSequenceClassification",
            "TFLayoutLMForTokenClassification",
            "TFLayoutLMMainLayer",
            "TFLayoutLMModel",
            "TFLayoutLMPreTrainedModel",
        ]
    )
    _import_structure["models.layoutlmv3"].extend(
        [
            "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLayoutLMv3ForQuestionAnswering",
            "TFLayoutLMv3ForSequenceClassification",
            "TFLayoutLMv3ForTokenClassification",
            "TFLayoutLMv3Model",
            "TFLayoutLMv3PreTrainedModel",
        ]
    )
    _import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"])
    _import_structure["models.longformer"].extend(
        [
            "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLongformerForMaskedLM",
            "TFLongformerForMultipleChoice",
            "TFLongformerForQuestionAnswering",
            "TFLongformerForSequenceClassification",
            "TFLongformerForTokenClassification",
            "TFLongformerModel",
            "TFLongformerPreTrainedModel",
            "TFLongformerSelfAttention",
        ]
    )
    _import_structure["models.lxmert"].extend(
        [
            "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLxmertForPreTraining",
            "TFLxmertMainLayer",
            "TFLxmertModel",
            "TFLxmertPreTrainedModel",
            "TFLxmertVisualFeatureEncoder",
        ]
    )
    _import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"])
    _import_structure["models.mbart"].extend(
        ["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"]
    )
    _import_structure["models.mobilebert"].extend(
        [
            "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFMobileBertForMaskedLM",
            "TFMobileBertForMultipleChoice",
            "TFMobileBertForNextSentencePrediction",
            "TFMobileBertForPreTraining",
            "TFMobileBertForQuestionAnswering",
            "TFMobileBertForSequenceClassification",
            "TFMobileBertForTokenClassification",
            "TFMobileBertMainLayer",
            "TFMobileBertModel",
            "TFMobileBertPreTrainedModel",
        ]
    )
    _import_structure["models.mobilevit"].extend(
        [
            "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFMobileViTForImageClassification",
            "TFMobileViTForSemanticSegmentation",
            "TFMobileViTModel",
            "TFMobileViTPreTrainedModel",
        ]
    )
    _import_structure["models.mpnet"].extend(
        [
            "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFMPNetForMaskedLM",
            "TFMPNetForMultipleChoice",
            "TFMPNetForQuestionAnswering",
            "TFMPNetForSequenceClassification",
            "TFMPNetForTokenClassification",
            "TFMPNetMainLayer",
            "TFMPNetModel",
            "TFMPNetPreTrainedModel",
        ]
    )
    _import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"])
    _import_structure["models.openai"].extend(
        [
            "TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFOpenAIGPTDoubleHeadsModel",
            "TFOpenAIGPTForSequenceClassification",
            "TFOpenAIGPTLMHeadModel",
            "TFOpenAIGPTMainLayer",
            "TFOpenAIGPTModel",
            "TFOpenAIGPTPreTrainedModel",
        ]
    )
    _import_structure["models.opt"].extend(
        [
            "TFOPTForCausalLM",
            "TFOPTModel",
            "TFOPTPreTrainedModel",
        ]
    )
    _import_structure["models.pegasus"].extend(
        [
            "TFPegasusForConditionalGeneration",
            "TFPegasusModel",
            "TFPegasusPreTrainedModel",
        ]
    )
    _import_structure["models.rag"].extend(
        [
            "TFRagModel",
            "TFRagPreTrainedModel",
            "TFRagSequenceForGeneration",
            "TFRagTokenForGeneration",
        ]
    )
    _import_structure["models.regnet"].extend(
        [
            "TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRegNetForImageClassification",
            "TFRegNetModel",
            "TFRegNetPreTrainedModel",
        ]
    )
    _import_structure["models.rembert"].extend(
        [
            "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRemBertForCausalLM",
            "TFRemBertForMaskedLM",
            "TFRemBertForMultipleChoice",
            "TFRemBertForQuestionAnswering",
            "TFRemBertForSequenceClassification",
            "TFRemBertForTokenClassification",
            "TFRemBertLayer",
            "TFRemBertModel",
            "TFRemBertPreTrainedModel",
        ]
    )
    _import_structure["models.resnet"].extend(
        [
            "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFResNetForImageClassification",
            "TFResNetModel",
            "TFResNetPreTrainedModel",
        ]
    )
    _import_structure["models.roberta"].extend(
        [
            "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRobertaForCausalLM",
            "TFRobertaForMaskedLM",
            "TFRobertaForMultipleChoice",
            "TFRobertaForQuestionAnswering",
            "TFRobertaForSequenceClassification",
            "TFRobertaForTokenClassification",
            "TFRobertaMainLayer",
            "TFRobertaModel",
            "TFRobertaPreTrainedModel",
        ]
    )
    _import_structure["models.roberta_prelayernorm"].extend(
        [
            "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRobertaPreLayerNormForCausalLM",
            "TFRobertaPreLayerNormForMaskedLM",
            "TFRobertaPreLayerNormForMultipleChoice",
            "TFRobertaPreLayerNormForQuestionAnswering",
            "TFRobertaPreLayerNormForSequenceClassification",
            "TFRobertaPreLayerNormForTokenClassification",
            "TFRobertaPreLayerNormMainLayer",
            "TFRobertaPreLayerNormModel",
            "TFRobertaPreLayerNormPreTrainedModel",
        ]
    )
    _import_structure["models.roformer"].extend(
        [
            "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRoFormerForCausalLM",
            "TFRoFormerForMaskedLM",
            "TFRoFormerForMultipleChoice",
            "TFRoFormerForQuestionAnswering",
            "TFRoFormerForSequenceClassification",
            "TFRoFormerForTokenClassification",
            "TFRoFormerLayer",
            "TFRoFormerModel",
            "TFRoFormerPreTrainedModel",
        ]
    )
    _import_structure["models.sam"].extend(
        [
            "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSamModel",
            "TFSamPreTrainedModel",
        ]
    )
    _import_structure["models.segformer"].extend(
        [
            "TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSegformerDecodeHead",
            "TFSegformerForImageClassification",
            "TFSegformerForSemanticSegmentation",
            "TFSegformerModel",
            "TFSegformerPreTrainedModel",
        ]
    )
    _import_structure["models.speech_to_text"].extend(
        [
            "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSpeech2TextForConditionalGeneration",
            "TFSpeech2TextModel",
            "TFSpeech2TextPreTrainedModel",
        ]
    )
    _import_structure["models.swin"].extend(
        [
            "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFSwinForImageClassification",
            "TFSwinForMaskedImageModeling",
            "TFSwinModel",
            "TFSwinPreTrainedModel",
        ]
    )
    _import_structure["models.t5"].extend(
        [
            "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFT5EncoderModel",
            "TFT5ForConditionalGeneration",
            "TFT5Model",
            "TFT5PreTrainedModel",
        ]
    )
    _import_structure["models.tapas"].extend(
        [
            "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFTapasForMaskedLM",
            "TFTapasForQuestionAnswering",
            "TFTapasForSequenceClassification",
            "TFTapasModel",
            "TFTapasPreTrainedModel",
        ]
    )
    _import_structure["models.vision_encoder_decoder"].extend(["TFVisionEncoderDecoderModel"])
    _import_structure["models.vision_text_dual_encoder"].extend(["TFVisionTextDualEncoderModel"])
    _import_structure["models.vit"].extend(
        [
            "TFViTForImageClassification",
            "TFViTModel",
            "TFViTPreTrainedModel",
        ]
    )
    _import_structure["models.vit_mae"].extend(
        [
            "TFViTMAEForPreTraining",
            "TFViTMAEModel",
            "TFViTMAEPreTrainedModel",
        ]
    )
    _import_structure["models.wav2vec2"].extend(
        [
            "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFWav2Vec2ForCTC",
            "TFWav2Vec2ForSequenceClassification",
            "TFWav2Vec2Model",
            "TFWav2Vec2PreTrainedModel",
        ]
    )
    _import_structure["models.whisper"].extend(
        [
            "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFWhisperForConditionalGeneration",
            "TFWhisperModel",
            "TFWhisperPreTrainedModel",
        ]
    )
    _import_structure["models.xglm"].extend(
        [
            "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXGLMForCausalLM",
            "TFXGLMModel",
            "TFXGLMPreTrainedModel",
        ]
    )
    _import_structure["models.xlm"].extend(
        [
            "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMForMultipleChoice",
            "TFXLMForQuestionAnsweringSimple",
            "TFXLMForSequenceClassification",
            "TFXLMForTokenClassification",
            "TFXLMMainLayer",
            "TFXLMModel",
            "TFXLMPreTrainedModel",
            "TFXLMWithLMHeadModel",
        ]
    )
    _import_structure["models.xlm_roberta"].extend(
        [
            "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMRobertaForCausalLM",
            "TFXLMRobertaForMaskedLM",
            "TFXLMRobertaForMultipleChoice",
            "TFXLMRobertaForQuestionAnswering",
            "TFXLMRobertaForSequenceClassification",
            "TFXLMRobertaForTokenClassification",
            "TFXLMRobertaModel",
            "TFXLMRobertaPreTrainedModel",
        ]
    )
    _import_structure["models.xlnet"].extend(
        [
            "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLNetForMultipleChoice",
            "TFXLNetForQuestionAnsweringSimple",
            "TFXLNetForSequenceClassification",
            "TFXLNetForTokenClassification",
            "TFXLNetLMHeadModel",
            "TFXLNetMainLayer",
            "TFXLNetModel",
            "TFXLNetPreTrainedModel",
        ]
    )
    _import_structure["optimization_tf"] = [
        "AdamWeightDecay",
        "GradientAccumulator",
        "WarmUp",
        "create_optimizer",
    ]
    _import_structure["tf_utils"] = []


try:
    if not (
        is_librosa_available()
        and is_essentia_available()
        and is_scipy_available()
        and is_torch_available()
        and is_pretty_midi_available()
    ):
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import (
        dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects,
    )

    _import_structure["utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects"] = [
        name
        for name in dir(dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects)
        if not name.startswith("_")
    ]
else:
    _import_structure["models.pop2piano"].append("Pop2PianoFeatureExtractor")
    _import_structure["models.pop2piano"].append("Pop2PianoTokenizer")
    _import_structure["models.pop2piano"].append("Pop2PianoProcessor")

try:
    if not is_torchaudio_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import (
        dummy_torchaudio_objects,
    )

    _import_structure["utils.dummy_torchaudio_objects"] = [
        name for name in dir(dummy_torchaudio_objects) if not name.startswith("_")
    ]
else:
    _import_structure["models.musicgen_melody"].append("MusicgenMelodyFeatureExtractor")
    _import_structure["models.musicgen_melody"].append("MusicgenMelodyProcessor")


# FLAX-backed objects
try:
    if not is_flax_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    from .utils import dummy_flax_objects

    _import_structure["utils.dummy_flax_objects"] = [
        name for name in dir(dummy_flax_objects) if not name.startswith("_")
    ]
else:
    _import_structure["generation"].extend(
        [
            "FlaxForcedBOSTokenLogitsProcessor",
            "FlaxForcedEOSTokenLogitsProcessor",
            "FlaxForceTokensLogitsProcessor",
            "FlaxGenerationMixin",
            "FlaxLogitsProcessor",
            "FlaxLogitsProcessorList",
            "FlaxLogitsWarper",
            "FlaxMinLengthLogitsProcessor",
            "FlaxTemperatureLogitsWarper",
            "FlaxSuppressTokensAtBeginLogitsProcessor",
            "FlaxSuppressTokensLogitsProcessor",
            "FlaxTopKLogitsWarper",
            "FlaxTopPLogitsWarper",
            "FlaxWhisperTimeStampLogitsProcessor",
        ]
    )
    _import_structure["generation_flax_utils"] = []
    _import_structure["modeling_flax_outputs"] = []
    _import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"]
    _import_structure["models.albert"].extend(
        [
            "FlaxAlbertForMaskedLM",
            "FlaxAlbertForMultipleChoice",
            "FlaxAlbertForPreTraining",
            "FlaxAlbertForQuestionAnswering",
            "FlaxAlbertForSequenceClassification",
            "FlaxAlbertForTokenClassification",
            "FlaxAlbertModel",
            "FlaxAlbertPreTrainedModel",
        ]
    )
    _import_structure["models.auto"].extend(
        [
            "FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_FOR_CAUSAL_LM_MAPPING",
            "FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_FOR_MASKED_LM_MAPPING",
            "FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "FLAX_MODEL_FOR_PRETRAINING_MAPPING",
            "FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
            "FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
            "FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING",
            "FLAX_MODEL_MAPPING",
            "FlaxAutoModel",
            "FlaxAutoModelForCausalLM",
            "FlaxAutoModelForImageClassification",
            "FlaxAutoModelForMaskedLM",
            "FlaxAutoModelForMultipleChoice",
            "FlaxAutoModelForNextSentencePrediction",
            "FlaxAutoModelForPreTraining",
            "FlaxAutoModelForQuestionAnswering",
            "FlaxAutoModelForSeq2SeqLM",
            "FlaxAutoModelForSequenceClassification",
            "FlaxAutoModelForSpeechSeq2Seq",
            "FlaxAutoModelForTokenClassification",
            "FlaxAutoModelForVision2Seq",
        ]
    )

    # Flax models structure

    _import_structure["models.bart"].extend(
        [
            "FlaxBartDecoderPreTrainedModel",
            "FlaxBartForCausalLM",
            "FlaxBartForConditionalGeneration",
            "FlaxBartForQuestionAnswering",
            "FlaxBartForSequenceClassification",
            "FlaxBartModel",
            "FlaxBartPreTrainedModel",
        ]
    )
    _import_structure["models.beit"].extend(
        [
            "FlaxBeitForImageClassification",
            "FlaxBeitForMaskedImageModeling",
            "FlaxBeitModel",
            "FlaxBeitPreTrainedModel",
        ]
    )

    _import_structure["models.bert"].extend(
        [
            "FlaxBertForCausalLM",
            "FlaxBertForMaskedLM",
            "FlaxBertForMultipleChoice",
            "FlaxBertForNextSentencePrediction",
            "FlaxBertForPreTraining",
            "FlaxBertForQuestionAnswering",
            "FlaxBertForSequenceClassification",
            "FlaxBertForTokenClassification",
            "FlaxBertModel",
            "FlaxBertPreTrainedModel",
        ]
    )
    _import_structure["models.big_bird"].extend(
        [
            "FlaxBigBirdForCausalLM",
            "FlaxBigBirdForMaskedLM",
            "FlaxBigBirdForMultipleChoice",
            "FlaxBigBirdForPreTraining",
            "FlaxBigBirdForQuestionAnswering",
            "FlaxBigBirdForSequenceClassification",
            "FlaxBigBirdForTokenClassification",
            "FlaxBigBirdModel",
            "FlaxBigBirdPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot"].extend(
        [
            "FlaxBlenderbotForConditionalGeneration",
            "FlaxBlenderbotModel",
            "FlaxBlenderbotPreTrainedModel",
        ]
    )
    _import_structure["models.blenderbot_small"].extend(
        [
            "FlaxBlenderbotSmallForConditionalGeneration",
            "FlaxBlenderbotSmallModel",
            "FlaxBlenderbotSmallPreTrainedModel",
        ]
    )
    _import_structure["models.bloom"].extend(
        [
            "FlaxBloomForCausalLM",
            "FlaxBloomModel",
            "FlaxBloomPreTrainedModel",
        ]
    )
    _import_structure["models.clip"].extend(
        [
            "FlaxCLIPModel",
            "FlaxCLIPPreTrainedModel",
            "FlaxCLIPTextModel",
            "FlaxCLIPTextPreTrainedModel",
            "FlaxCLIPTextModelWithProjection",
            "FlaxCLIPVisionModel",
            "FlaxCLIPVisionPreTrainedModel",
        ]
    )
    _import_structure["models.distilbert"].extend(
        [
            "FlaxDistilBertForMaskedLM",
            "FlaxDistilBertForMultipleChoice",
            "FlaxDistilBertForQuestionAnswering",
            "FlaxDistilBertForSequenceClassification",
            "FlaxDistilBertForTokenClassification",
            "FlaxDistilBertModel",
            "FlaxDistilBertPreTrainedModel",
        ]
    )
    _import_structure["models.electra"].extend(
        [
            "FlaxElectraForCausalLM",
            "FlaxElectraForMaskedLM",
            "FlaxElectraForMultipleChoice",
            "FlaxElectraForPreTraining",
            "FlaxElectraForQuestionAnswering",
            "FlaxElectraForSequenceClassification",
            "FlaxElectraForTokenClassification",
            "FlaxElectraModel",
            "FlaxElectraPreTrainedModel",
        ]
    )
    _import_structure["models.encoder_decoder"].append("FlaxEncoderDecoderModel")
    _import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"])
    _import_structure["models.gpt_neo"].extend(
        ["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"]
    )
    _import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"])
    _import_structure["models.llama"].extend(["FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxLlamaPreTrainedModel"])
    _import_structure["models.gemma"].extend(["FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxGemmaPreTrainedModel"])
    _import_structure["models.longt5"].extend(
        [
            "FlaxLongT5ForConditionalGeneration",
            "FlaxLongT5Model",
            "FlaxLongT5PreTrainedModel",
        ]
    )
    _import_structure["models.marian"].extend(
        [
            "FlaxMarianModel",
            "FlaxMarianMTModel",
            "FlaxMarianPreTrainedModel",
        ]
    )
    _import_structure["models.mbart"].extend(
        [
            "FlaxMBartForConditionalGeneration",
            "FlaxMBartForQuestionAnswering",
            "FlaxMBartForSequenceClassification",
            "FlaxMBartModel",
            "FlaxMBartPreTrainedModel",
        ]
    )
    _import_structure["models.mistral"].extend(
        [
            "FlaxMistralForCausalLM",
            "FlaxMistralModel",
            "FlaxMistralPreTrainedModel",
        ]
    )
    _import_structure["models.mt5"].extend(["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"])
    _import_structure["models.opt"].extend(
        [
            "FlaxOPTForCausalLM",
            "FlaxOPTModel",
            "FlaxOPTPreTrainedModel",
        ]
    )
    _import_structure["models.pegasus"].extend(
        [
            "FlaxPegasusForConditionalGeneration",
            "FlaxPegasusModel",
            "FlaxPegasusPreTrainedModel",
        ]
    )
    _import_structure["models.regnet"].extend(
        [
            "FlaxRegNetForImageClassification",
            "FlaxRegNetModel",
            "FlaxRegNetPreTrainedModel",
        ]
    )
    _import_structure["models.resnet"].extend(
        [
            "FlaxResNetForImageClassification",
            "FlaxResNetModel",
            "FlaxResNetPreTrainedModel",
        ]
    )
    _import_structure["models.roberta"].extend(
        [
            "FlaxRobertaForCausalLM",
            "FlaxRobertaForMaskedLM",
            "FlaxRobertaForMultipleChoice",
            "FlaxRobertaForQuestionAnswering",
            "FlaxRobertaForSequenceClassification",
            "FlaxRobertaForTokenClassification",
            "FlaxRobertaModel",
            "FlaxRobertaPreTrainedModel",
        ]
    )
    _import_structure["models.roberta_prelayernorm"].extend(
        [
            "FlaxRobertaPreLayerNormForCausalLM",
            "FlaxRobertaPreLayerNormForMaskedLM",
            "FlaxRobertaPreLayerNormForMultipleChoice",
            "FlaxRobertaPreLayerNormForQuestionAnswering",
            "FlaxRobertaPreLayerNormForSequenceClassification",
            "FlaxRobertaPreLayerNormForTokenClassification",
            "FlaxRobertaPreLayerNormModel",
            "FlaxRobertaPreLayerNormPreTrainedModel",
        ]
    )
    _import_structure["models.roformer"].extend(
        [
            "FlaxRoFormerForMaskedLM",
            "FlaxRoFormerForMultipleChoice",
            "FlaxRoFormerForQuestionAnswering",
            "FlaxRoFormerForSequenceClassification",
            "FlaxRoFormerForTokenClassification",
            "FlaxRoFormerModel",
            "FlaxRoFormerPreTrainedModel",
        ]
    )
    _import_structure["models.speech_encoder_decoder"].append("FlaxSpeechEncoderDecoderModel")
    _import_structure["models.t5"].extend(
        [
            "FlaxT5EncoderModel",
            "FlaxT5ForConditionalGeneration",
            "FlaxT5Model",
            "FlaxT5PreTrainedModel",
        ]
    )
    _import_structure["models.vision_encoder_decoder"].append("FlaxVisionEncoderDecoderModel")
    _import_structure["models.vision_text_dual_encoder"].extend(["FlaxVisionTextDualEncoderModel"])
    _import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"])
    _import_structure["models.wav2vec2"].extend(
        [
            "FlaxWav2Vec2ForCTC",
            "FlaxWav2Vec2ForPreTraining",
            "FlaxWav2Vec2Model",
            "FlaxWav2Vec2PreTrainedModel",
        ]
    )
    _import_structure["models.whisper"].extend(
        [
            "FlaxWhisperForConditionalGeneration",
            "FlaxWhisperModel",
            "FlaxWhisperPreTrainedModel",
            "FlaxWhisperForAudioClassification",
        ]
    )
    _import_structure["models.xglm"].extend(
        [
            "FlaxXGLMForCausalLM",
            "FlaxXGLMModel",
            "FlaxXGLMPreTrainedModel",
        ]
    )
    _import_structure["models.xlm_roberta"].extend(
        [
            "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FlaxXLMRobertaForMaskedLM",
            "FlaxXLMRobertaForMultipleChoice",
            "FlaxXLMRobertaForQuestionAnswering",
            "FlaxXLMRobertaForSequenceClassification",
            "FlaxXLMRobertaForTokenClassification",
            "FlaxXLMRobertaModel",
            "FlaxXLMRobertaForCausalLM",
            "FlaxXLMRobertaPreTrainedModel",
        ]
    )


# Direct imports for type-checking
if TYPE_CHECKING:
    # Configuration
    from .configuration_utils import PretrainedConfig

    # Data
    from .data import (
        DataProcessor,
        InputExample,
        InputFeatures,
        SingleSentenceClassificationProcessor,
        SquadExample,
        SquadFeatures,
        SquadV1Processor,
        SquadV2Processor,
        glue_compute_metrics,
        glue_convert_examples_to_features,
        glue_output_modes,
        glue_processors,
        glue_tasks_num_labels,
        squad_convert_examples_to_features,
        xnli_compute_metrics,
        xnli_output_modes,
        xnli_processors,
        xnli_tasks_num_labels,
    )
    from .data.data_collator import (
        DataCollator,
        DataCollatorForLanguageModeling,
        DataCollatorForPermutationLanguageModeling,
        DataCollatorForSeq2Seq,
        DataCollatorForSOP,
        DataCollatorForTokenClassification,
        DataCollatorForWholeWordMask,
        DataCollatorWithPadding,
        DefaultDataCollator,
        default_data_collator,
    )
    from .feature_extraction_sequence_utils import SequenceFeatureExtractor

    # Feature Extractor
    from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin

    # Generation
    from .generation import GenerationConfig, TextIteratorStreamer, TextStreamer
    from .hf_argparser import HfArgumentParser

    # Integrations
    from .integrations import (
        is_clearml_available,
        is_comet_available,
        is_dvclive_available,
        is_neptune_available,
        is_optuna_available,
        is_ray_available,
        is_ray_tune_available,
        is_sigopt_available,
        is_tensorboard_available,
        is_wandb_available,
    )

    # Model Cards
    from .modelcard import ModelCard

    # TF 2.0 <=> PyTorch conversion utilities
    from .modeling_tf_pytorch_utils import (
        convert_tf_weight_name_to_pt_weight_name,
        load_pytorch_checkpoint_in_tf2_model,
        load_pytorch_model_in_tf2_model,
        load_pytorch_weights_in_tf2_model,
        load_tf2_checkpoint_in_pytorch_model,
        load_tf2_model_in_pytorch_model,
        load_tf2_weights_in_pytorch_model,
    )
    from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
    from .models.align import (
        ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        AlignConfig,
        AlignProcessor,
        AlignTextConfig,
        AlignVisionConfig,
    )
    from .models.altclip import (
        ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        AltCLIPConfig,
        AltCLIPProcessor,
        AltCLIPTextConfig,
        AltCLIPVisionConfig,
    )
    from .models.audio_spectrogram_transformer import (
        AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ASTConfig,
        ASTFeatureExtractor,
    )
    from .models.auto import (
        ALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CONFIG_MAPPING,
        FEATURE_EXTRACTOR_MAPPING,
        IMAGE_PROCESSOR_MAPPING,
        MODEL_NAMES_MAPPING,
        PROCESSOR_MAPPING,
        TOKENIZER_MAPPING,
        AutoConfig,
        AutoFeatureExtractor,
        AutoImageProcessor,
        AutoProcessor,
        AutoTokenizer,
    )
    from .models.autoformer import (
        AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        AutoformerConfig,
    )
    from .models.bark import (
        BarkCoarseConfig,
        BarkConfig,
        BarkFineConfig,
        BarkProcessor,
        BarkSemanticConfig,
    )
    from .models.bart import BartConfig, BartTokenizer
    from .models.beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig
    from .models.bert import (
        BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BasicTokenizer,
        BertConfig,
        BertTokenizer,
        WordpieceTokenizer,
    )
    from .models.bert_generation import BertGenerationConfig
    from .models.bert_japanese import (
        BertJapaneseTokenizer,
        CharacterTokenizer,
        MecabTokenizer,
    )
    from .models.bertweet import BertweetTokenizer
    from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig
    from .models.bigbird_pegasus import (
        BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BigBirdPegasusConfig,
    )
    from .models.biogpt import (
        BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BioGptConfig,
        BioGptTokenizer,
    )
    from .models.bit import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BitConfig
    from .models.blenderbot import (
        BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BlenderbotConfig,
        BlenderbotTokenizer,
    )
    from .models.blenderbot_small import (
        BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BlenderbotSmallConfig,
        BlenderbotSmallTokenizer,
    )
    from .models.blip import (
        BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BlipConfig,
        BlipProcessor,
        BlipTextConfig,
        BlipVisionConfig,
    )
    from .models.blip_2 import (
        BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Blip2Config,
        Blip2Processor,
        Blip2QFormerConfig,
        Blip2VisionConfig,
    )
    from .models.bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig
    from .models.bridgetower import (
        BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BridgeTowerConfig,
        BridgeTowerProcessor,
        BridgeTowerTextConfig,
        BridgeTowerVisionConfig,
    )
    from .models.bros import (
        BROS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BrosConfig,
        BrosProcessor,
    )
    from .models.byt5 import ByT5Tokenizer
    from .models.camembert import (
        CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CamembertConfig,
    )
    from .models.canine import (
        CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CanineConfig,
        CanineTokenizer,
    )
    from .models.chinese_clip import (
        CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ChineseCLIPConfig,
        ChineseCLIPProcessor,
        ChineseCLIPTextConfig,
        ChineseCLIPVisionConfig,
    )
    from .models.clap import (
        CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
        ClapAudioConfig,
        ClapConfig,
        ClapProcessor,
        ClapTextConfig,
    )
    from .models.clip import (
        CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CLIPConfig,
        CLIPProcessor,
        CLIPTextConfig,
        CLIPTokenizer,
        CLIPVisionConfig,
    )
    from .models.clipseg import (
        CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CLIPSegConfig,
        CLIPSegProcessor,
        CLIPSegTextConfig,
        CLIPSegVisionConfig,
    )
    from .models.clvp import (
        CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ClvpConfig,
        ClvpDecoderConfig,
        ClvpEncoderConfig,
        ClvpFeatureExtractor,
        ClvpProcessor,
        ClvpTokenizer,
    )
    from .models.codegen import (
        CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CodeGenConfig,
        CodeGenTokenizer,
    )
    from .models.cohere import COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP, CohereConfig
    from .models.conditional_detr import (
        CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ConditionalDetrConfig,
    )
    from .models.convbert import (
        CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ConvBertConfig,
        ConvBertTokenizer,
    )
    from .models.convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig
    from .models.convnextv2 import (
        CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ConvNextV2Config,
    )
    from .models.cpmant import (
        CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CpmAntConfig,
        CpmAntTokenizer,
    )
    from .models.ctrl import (
        CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CTRLConfig,
        CTRLTokenizer,
    )
    from .models.cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
    from .models.data2vec import (
        DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Data2VecAudioConfig,
        Data2VecTextConfig,
        Data2VecVisionConfig,
    )
    from .models.deberta import (
        DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DebertaConfig,
        DebertaTokenizer,
    )
    from .models.deberta_v2 import (
        DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DebertaV2Config,
    )
    from .models.decision_transformer import (
        DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DecisionTransformerConfig,
    )
    from .models.deformable_detr import (
        DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DeformableDetrConfig,
    )
    from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
    from .models.deprecated.mctct import (
        MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MCTCTConfig,
        MCTCTFeatureExtractor,
        MCTCTProcessor,
    )
    from .models.deprecated.mmbt import MMBTConfig
    from .models.deprecated.open_llama import (
        OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        OpenLlamaConfig,
    )
    from .models.deprecated.retribert import (
        RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RetriBertConfig,
        RetriBertTokenizer,
    )
    from .models.deprecated.tapex import TapexTokenizer
    from .models.deprecated.trajectory_transformer import (
        TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TrajectoryTransformerConfig,
    )
    from .models.deprecated.transfo_xl import (
        TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TransfoXLConfig,
        TransfoXLCorpus,
        TransfoXLTokenizer,
    )
    from .models.deprecated.van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
    from .models.depth_anything import DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP, DepthAnythingConfig
    from .models.deta import DETA_PRETRAINED_CONFIG_ARCHIVE_MAP, DetaConfig
    from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
    from .models.dinat import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP, DinatConfig
    from .models.dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config
    from .models.distilbert import (
        DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DistilBertConfig,
        DistilBertTokenizer,
    )
    from .models.donut import (
        DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DonutProcessor,
        DonutSwinConfig,
    )
    from .models.dpr import (
        DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DPRConfig,
        DPRContextEncoderTokenizer,
        DPRQuestionEncoderTokenizer,
        DPRReaderOutput,
        DPRReaderTokenizer,
    )
    from .models.dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
    from .models.efficientformer import (
        EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        EfficientFormerConfig,
    )
    from .models.efficientnet import (
        EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        EfficientNetConfig,
    )
    from .models.electra import (
        ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ElectraConfig,
        ElectraTokenizer,
    )
    from .models.encodec import (
        ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
        EncodecConfig,
        EncodecFeatureExtractor,
    )
    from .models.encoder_decoder import EncoderDecoderConfig
    from .models.ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig
    from .models.ernie_m import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieMConfig
    from .models.esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig, EsmTokenizer
    from .models.falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
    from .models.fastspeech2_conformer import (
        FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FastSpeech2ConformerConfig,
        FastSpeech2ConformerHifiGanConfig,
        FastSpeech2ConformerTokenizer,
        FastSpeech2ConformerWithHifiGanConfig,
    )
    from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer
    from .models.flava import (
        FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FlavaConfig,
        FlavaImageCodebookConfig,
        FlavaImageConfig,
        FlavaMultimodalConfig,
        FlavaTextConfig,
    )
    from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
    from .models.focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
    from .models.fsmt import (
        FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FSMTConfig,
        FSMTTokenizer,
    )
    from .models.funnel import (
        FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FunnelConfig,
        FunnelTokenizer,
    )
    from .models.fuyu import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP, FuyuConfig
    from .models.gemma import GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP, GemmaConfig
    from .models.git import (
        GIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GitConfig,
        GitProcessor,
        GitVisionConfig,
    )
    from .models.glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
    from .models.gpt2 import (
        GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPT2Config,
        GPT2Tokenizer,
    )
    from .models.gpt_bigcode import (
        GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPTBigCodeConfig,
    )
    from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
    from .models.gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
    from .models.gpt_neox_japanese import (
        GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPTNeoXJapaneseConfig,
    )
    from .models.gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig
    from .models.gptsan_japanese import (
        GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPTSanJapaneseConfig,
        GPTSanJapaneseTokenizer,
    )
    from .models.graphormer import (
        GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GraphormerConfig,
    )
    from .models.groupvit import (
        GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GroupViTConfig,
        GroupViTTextConfig,
        GroupViTVisionConfig,
    )
    from .models.herbert import HerbertTokenizer
    from .models.hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig
    from .models.ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig
    from .models.idefics import (
        IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        IdeficsConfig,
    )
    from .models.imagegpt import IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ImageGPTConfig
    from .models.informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
    from .models.instructblip import (
        INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        InstructBlipConfig,
        InstructBlipProcessor,
        InstructBlipQFormerConfig,
        InstructBlipVisionConfig,
    )
    from .models.jukebox import (
        JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
        JukeboxConfig,
        JukeboxPriorConfig,
        JukeboxTokenizer,
        JukeboxVQVAEConfig,
    )
    from .models.kosmos2 import (
        KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Kosmos2Config,
        Kosmos2Processor,
    )
    from .models.layoutlm import (
        LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LayoutLMConfig,
        LayoutLMTokenizer,
    )
    from .models.layoutlmv2 import (
        LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LayoutLMv2Config,
        LayoutLMv2FeatureExtractor,
        LayoutLMv2ImageProcessor,
        LayoutLMv2Processor,
        LayoutLMv2Tokenizer,
    )
    from .models.layoutlmv3 import (
        LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LayoutLMv3Config,
        LayoutLMv3FeatureExtractor,
        LayoutLMv3ImageProcessor,
        LayoutLMv3Processor,
        LayoutLMv3Tokenizer,
    )
    from .models.layoutxlm import LayoutXLMProcessor
    from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer
    from .models.levit import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, LevitConfig
    from .models.lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
    from .models.llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
    from .models.llava import (
        LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LlavaConfig,
        LlavaProcessor,
    )
    from .models.llava_next import (
        LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LlavaNextConfig,
        LlavaNextProcessor,
    )
    from .models.longformer import (
        LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LongformerConfig,
        LongformerTokenizer,
    )
    from .models.longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config
    from .models.luke import (
        LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LukeConfig,
        LukeTokenizer,
    )
    from .models.lxmert import (
        LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LxmertConfig,
        LxmertTokenizer,
    )
    from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
    from .models.mamba import MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP, MambaConfig
    from .models.marian import MarianConfig
    from .models.markuplm import (
        MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MarkupLMConfig,
        MarkupLMFeatureExtractor,
        MarkupLMProcessor,
        MarkupLMTokenizer,
    )
    from .models.mask2former import (
        MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Mask2FormerConfig,
    )
    from .models.maskformer import (
        MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MaskFormerConfig,
        MaskFormerSwinConfig,
    )
    from .models.mbart import MBartConfig
    from .models.mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig
    from .models.megatron_bert import (
        MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MegatronBertConfig,
    )
    from .models.mgp_str import (
        MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MgpstrConfig,
        MgpstrProcessor,
        MgpstrTokenizer,
    )
    from .models.mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig
    from .models.mixtral import MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MixtralConfig
    from .models.mobilebert import (
        MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MobileBertConfig,
        MobileBertTokenizer,
    )
    from .models.mobilenet_v1 import (
        MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MobileNetV1Config,
    )
    from .models.mobilenet_v2 import (
        MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MobileNetV2Config,
    )
    from .models.mobilevit import (
        MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MobileViTConfig,
    )
    from .models.mobilevitv2 import (
        MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MobileViTV2Config,
    )
    from .models.mpnet import (
        MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MPNetConfig,
        MPNetTokenizer,
    )
    from .models.mpt import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP, MptConfig
    from .models.mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
    from .models.mt5 import MT5Config
    from .models.musicgen import (
        MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MusicgenConfig,
        MusicgenDecoderConfig,
    )
    from .models.musicgen_melody import (
        MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST,
        MusicgenMelodyConfig,
        MusicgenMelodyDecoderConfig,
    )
    from .models.mvp import MvpConfig, MvpTokenizer
    from .models.nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig
    from .models.nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
    from .models.nllb_moe import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig
    from .models.nougat import NougatProcessor
    from .models.nystromformer import (
        NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        NystromformerConfig,
    )
    from .models.oneformer import (
        ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        OneFormerConfig,
        OneFormerProcessor,
    )
    from .models.openai import (
        OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        OpenAIGPTConfig,
        OpenAIGPTTokenizer,
    )
    from .models.opt import OPTConfig
    from .models.owlv2 import (
        OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Owlv2Config,
        Owlv2Processor,
        Owlv2TextConfig,
        Owlv2VisionConfig,
    )
    from .models.owlvit import (
        OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        OwlViTConfig,
        OwlViTProcessor,
        OwlViTTextConfig,
        OwlViTVisionConfig,
    )
    from .models.patchtsmixer import (
        PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PatchTSMixerConfig,
    )
    from .models.patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig
    from .models.pegasus import (
        PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PegasusConfig,
        PegasusTokenizer,
    )
    from .models.pegasus_x import (
        PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PegasusXConfig,
    )
    from .models.perceiver import (
        PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PerceiverConfig,
        PerceiverTokenizer,
    )
    from .models.persimmon import (
        PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PersimmonConfig,
    )
    from .models.phi import PHI_PRETRAINED_CONFIG_ARCHIVE_MAP, PhiConfig
    from .models.phobert import PhobertTokenizer
    from .models.pix2struct import (
        PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Pix2StructConfig,
        Pix2StructProcessor,
        Pix2StructTextConfig,
        Pix2StructVisionConfig,
    )
    from .models.plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
    from .models.poolformer import (
        POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PoolFormerConfig,
    )
    from .models.pop2piano import (
        POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Pop2PianoConfig,
    )
    from .models.prophetnet import (
        PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ProphetNetConfig,
        ProphetNetTokenizer,
    )
    from .models.pvt import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP, PvtConfig
    from .models.pvt_v2 import PVT_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, PvtV2Config
    from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig
    from .models.qwen2 import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2Config, Qwen2Tokenizer
    from .models.rag import RagConfig, RagRetriever, RagTokenizer
    from .models.realm import (
        REALM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RealmConfig,
        RealmTokenizer,
    )
    from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
    from .models.regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig
    from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig
    from .models.resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig
    from .models.roberta import (
        ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RobertaConfig,
        RobertaTokenizer,
    )
    from .models.roberta_prelayernorm import (
        ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RobertaPreLayerNormConfig,
    )
    from .models.roc_bert import (
        ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RoCBertConfig,
        RoCBertTokenizer,
    )
    from .models.roformer import (
        ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RoFormerConfig,
        RoFormerTokenizer,
    )
    from .models.rwkv import RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP, RwkvConfig
    from .models.sam import (
        SAM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SamConfig,
        SamMaskDecoderConfig,
        SamProcessor,
        SamPromptEncoderConfig,
        SamVisionConfig,
    )
    from .models.seamless_m4t import (
        SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SeamlessM4TConfig,
        SeamlessM4TFeatureExtractor,
        SeamlessM4TProcessor,
    )
    from .models.seamless_m4t_v2 import (
        SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SeamlessM4Tv2Config,
    )
    from .models.segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig
    from .models.seggpt import SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, SegGptConfig
    from .models.sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
    from .models.sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig
    from .models.siglip import (
        SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SiglipConfig,
        SiglipProcessor,
        SiglipTextConfig,
        SiglipVisionConfig,
    )
    from .models.speech_encoder_decoder import SpeechEncoderDecoderConfig
    from .models.speech_to_text import (
        SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Speech2TextConfig,
        Speech2TextFeatureExtractor,
        Speech2TextProcessor,
    )
    from .models.speech_to_text_2 import (
        SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Speech2Text2Config,
        Speech2Text2Processor,
        Speech2Text2Tokenizer,
    )
    from .models.speecht5 import (
        SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
        SpeechT5Config,
        SpeechT5FeatureExtractor,
        SpeechT5HifiGanConfig,
        SpeechT5Processor,
    )
    from .models.splinter import (
        SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SplinterConfig,
        SplinterTokenizer,
    )
    from .models.squeezebert import (
        SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SqueezeBertConfig,
        SqueezeBertTokenizer,
    )
    from .models.stablelm import STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP, StableLmConfig
    from .models.starcoder2 import STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP, Starcoder2Config
    from .models.superpoint import SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP, SuperPointConfig
    from .models.swiftformer import (
        SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SwiftFormerConfig,
    )
    from .models.swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig
    from .models.swin2sr import SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP, Swin2SRConfig
    from .models.swinv2 import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Swinv2Config
    from .models.switch_transformers import (
        SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SwitchTransformersConfig,
    )
    from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
    from .models.table_transformer import (
        TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TableTransformerConfig,
    )
    from .models.tapas import (
        TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TapasConfig,
        TapasTokenizer,
    )
    from .models.time_series_transformer import (
        TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TimeSeriesTransformerConfig,
    )
    from .models.timesformer import (
        TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TimesformerConfig,
    )
    from .models.timm_backbone import TimmBackboneConfig
    from .models.trocr import (
        TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TrOCRConfig,
        TrOCRProcessor,
    )
    from .models.tvlt import (
        TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TvltConfig,
        TvltFeatureExtractor,
        TvltProcessor,
    )
    from .models.tvp import (
        TVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TvpConfig,
        TvpProcessor,
    )
    from .models.udop import UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP, UdopConfig, UdopProcessor
    from .models.umt5 import UMT5Config
    from .models.unispeech import (
        UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP,
        UniSpeechConfig,
    )
    from .models.unispeech_sat import (
        UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        UniSpeechSatConfig,
    )
    from .models.univnet import (
        UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        UnivNetConfig,
        UnivNetFeatureExtractor,
    )
    from .models.upernet import UperNetConfig
    from .models.videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig
    from .models.vilt import (
        VILT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ViltConfig,
        ViltFeatureExtractor,
        ViltImageProcessor,
        ViltProcessor,
    )
    from .models.vipllava import (
        VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        VipLlavaConfig,
    )
    from .models.vision_encoder_decoder import VisionEncoderDecoderConfig
    from .models.vision_text_dual_encoder import (
        VisionTextDualEncoderConfig,
        VisionTextDualEncoderProcessor,
    )
    from .models.visual_bert import (
        VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        VisualBertConfig,
    )
    from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig
    from .models.vit_hybrid import (
        VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ViTHybridConfig,
    )
    from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
    from .models.vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
    from .models.vitdet import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP, VitDetConfig
    from .models.vitmatte import VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP, VitMatteConfig
    from .models.vits import (
        VITS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        VitsConfig,
        VitsTokenizer,
    )
    from .models.vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
    from .models.wav2vec2 import (
        WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Wav2Vec2Config,
        Wav2Vec2CTCTokenizer,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2Processor,
        Wav2Vec2Tokenizer,
    )
    from .models.wav2vec2_bert import (
        WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Wav2Vec2BertConfig,
        Wav2Vec2BertProcessor,
    )
    from .models.wav2vec2_conformer import (
        WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Wav2Vec2ConformerConfig,
    )
    from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer
    from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM
    from .models.wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
    from .models.whisper import (
        WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        WhisperConfig,
        WhisperFeatureExtractor,
        WhisperProcessor,
        WhisperTokenizer,
    )
    from .models.x_clip import (
        XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XCLIPConfig,
        XCLIPProcessor,
        XCLIPTextConfig,
        XCLIPVisionConfig,
    )
    from .models.xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
    from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer
    from .models.xlm_prophetnet import (
        XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLMProphetNetConfig,
    )
    from .models.xlm_roberta import (
        XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLMRobertaConfig,
    )
    from .models.xlm_roberta_xl import (
        XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLMRobertaXLConfig,
    )
    from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
    from .models.xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig
    from .models.yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig
    from .models.yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig

    # Pipelines
    from .pipelines import (
        AudioClassificationPipeline,
        AutomaticSpeechRecognitionPipeline,
        Conversation,
        ConversationalPipeline,
        CsvPipelineDataFormat,
        DepthEstimationPipeline,
        DocumentQuestionAnsweringPipeline,
        FeatureExtractionPipeline,
        FillMaskPipeline,
        ImageClassificationPipeline,
        ImageFeatureExtractionPipeline,
        ImageSegmentationPipeline,
        ImageToImagePipeline,
        ImageToTextPipeline,
        JsonPipelineDataFormat,
        MaskGenerationPipeline,
        NerPipeline,
        ObjectDetectionPipeline,
        PipedPipelineDataFormat,
        Pipeline,
        PipelineDataFormat,
        QuestionAnsweringPipeline,
        SummarizationPipeline,
        TableQuestionAnsweringPipeline,
        Text2TextGenerationPipeline,
        TextClassificationPipeline,
        TextGenerationPipeline,
        TextToAudioPipeline,
        TokenClassificationPipeline,
        TranslationPipeline,
        VideoClassificationPipeline,
        VisualQuestionAnsweringPipeline,
        ZeroShotAudioClassificationPipeline,
        ZeroShotClassificationPipeline,
        ZeroShotImageClassificationPipeline,
        ZeroShotObjectDetectionPipeline,
        pipeline,
    )
    from .processing_utils import ProcessorMixin

    # Tokenization
    from .tokenization_utils import PreTrainedTokenizer
    from .tokenization_utils_base import (
        AddedToken,
        BatchEncoding,
        CharSpan,
        PreTrainedTokenizerBase,
        SpecialTokensMixin,
        TokenSpan,
    )

    # Tools
    from .tools import (
        Agent,
        AzureOpenAiAgent,
        HfAgent,
        LocalAgent,
        OpenAiAgent,
        PipelineTool,
        RemoteTool,
        Tool,
        launch_gradio_demo,
        load_tool,
    )

    # Trainer
    from .trainer_callback import (
        DefaultFlowCallback,
        EarlyStoppingCallback,
        PrinterCallback,
        ProgressCallback,
        TrainerCallback,
        TrainerControl,
        TrainerState,
    )
    from .trainer_utils import (
        EvalPrediction,
        IntervalStrategy,
        SchedulerType,
        enable_full_determinism,
        set_seed,
    )
    from .training_args import TrainingArguments
    from .training_args_seq2seq import Seq2SeqTrainingArguments
    from .training_args_tf import TFTrainingArguments

    # Files and general utilities
    from .utils import (
        CONFIG_NAME,
        MODEL_CARD_NAME,
        PYTORCH_PRETRAINED_BERT_CACHE,
        PYTORCH_TRANSFORMERS_CACHE,
        SPIECE_UNDERLINE,
        TF2_WEIGHTS_NAME,
        TF_WEIGHTS_NAME,
        TRANSFORMERS_CACHE,
        WEIGHTS_NAME,
        TensorType,
        add_end_docstrings,
        add_start_docstrings,
        is_apex_available,
        is_bitsandbytes_available,
        is_datasets_available,
        is_decord_available,
        is_faiss_available,
        is_flax_available,
        is_keras_nlp_available,
        is_phonemizer_available,
        is_psutil_available,
        is_py3nvml_available,
        is_pyctcdecode_available,
        is_sacremoses_available,
        is_safetensors_available,
        is_scipy_available,
        is_sentencepiece_available,
        is_sklearn_available,
        is_speech_available,
        is_tensorflow_text_available,
        is_tf_available,
        is_timm_available,
        is_tokenizers_available,
        is_torch_available,
        is_torch_neuroncore_available,
        is_torch_npu_available,
        is_torch_tpu_available,
        is_torch_xla_available,
        is_torch_xpu_available,
        is_torchvision_available,
        is_vision_available,
        logging,
    )

    # bitsandbytes config
    from .utils.quantization_config import AqlmConfig, AwqConfig, BitsAndBytesConfig, GPTQConfig, QuantoConfig

    try:
        if not is_sentencepiece_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_sentencepiece_objects import *
    else:
        from .models.albert import AlbertTokenizer
        from .models.barthez import BarthezTokenizer
        from .models.bartpho import BartphoTokenizer
        from .models.bert_generation import BertGenerationTokenizer
        from .models.big_bird import BigBirdTokenizer
        from .models.camembert import CamembertTokenizer
        from .models.code_llama import CodeLlamaTokenizer
        from .models.cpm import CpmTokenizer
        from .models.deberta_v2 import DebertaV2Tokenizer
        from .models.ernie_m import ErnieMTokenizer
        from .models.fnet import FNetTokenizer
        from .models.gemma import GemmaTokenizer
        from .models.gpt_sw3 import GPTSw3Tokenizer
        from .models.layoutxlm import LayoutXLMTokenizer
        from .models.llama import LlamaTokenizer
        from .models.m2m_100 import M2M100Tokenizer
        from .models.marian import MarianTokenizer
        from .models.mbart import MBart50Tokenizer, MBartTokenizer
        from .models.mluke import MLukeTokenizer
        from .models.mt5 import MT5Tokenizer
        from .models.nllb import NllbTokenizer
        from .models.pegasus import PegasusTokenizer
        from .models.plbart import PLBartTokenizer
        from .models.reformer import ReformerTokenizer
        from .models.rembert import RemBertTokenizer
        from .models.seamless_m4t import SeamlessM4TTokenizer
        from .models.siglip import SiglipTokenizer
        from .models.speech_to_text import Speech2TextTokenizer
        from .models.speecht5 import SpeechT5Tokenizer
        from .models.t5 import T5Tokenizer
        from .models.udop import UdopTokenizer
        from .models.xglm import XGLMTokenizer
        from .models.xlm_prophetnet import XLMProphetNetTokenizer
        from .models.xlm_roberta import XLMRobertaTokenizer
        from .models.xlnet import XLNetTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_tokenizers_objects import *
    else:
        # Fast tokenizers imports
        from .models.albert import AlbertTokenizerFast
        from .models.bart import BartTokenizerFast
        from .models.barthez import BarthezTokenizerFast
        from .models.bert import BertTokenizerFast
        from .models.big_bird import BigBirdTokenizerFast
        from .models.blenderbot import BlenderbotTokenizerFast
        from .models.blenderbot_small import BlenderbotSmallTokenizerFast
        from .models.bloom import BloomTokenizerFast
        from .models.camembert import CamembertTokenizerFast
        from .models.clip import CLIPTokenizerFast
        from .models.code_llama import CodeLlamaTokenizerFast
        from .models.codegen import CodeGenTokenizerFast
        from .models.cohere import CohereTokenizerFast
        from .models.convbert import ConvBertTokenizerFast
        from .models.cpm import CpmTokenizerFast
        from .models.deberta import DebertaTokenizerFast
        from .models.deberta_v2 import DebertaV2TokenizerFast
        from .models.deprecated.retribert import RetriBertTokenizerFast
        from .models.distilbert import DistilBertTokenizerFast
        from .models.dpr import (
            DPRContextEncoderTokenizerFast,
            DPRQuestionEncoderTokenizerFast,
            DPRReaderTokenizerFast,
        )
        from .models.electra import ElectraTokenizerFast
        from .models.fnet import FNetTokenizerFast
        from .models.funnel import FunnelTokenizerFast
        from .models.gemma import GemmaTokenizerFast
        from .models.gpt2 import GPT2TokenizerFast
        from .models.gpt_neox import GPTNeoXTokenizerFast
        from .models.gpt_neox_japanese import GPTNeoXJapaneseTokenizer
        from .models.herbert import HerbertTokenizerFast
        from .models.layoutlm import LayoutLMTokenizerFast
        from .models.layoutlmv2 import LayoutLMv2TokenizerFast
        from .models.layoutlmv3 import LayoutLMv3TokenizerFast
        from .models.layoutxlm import LayoutXLMTokenizerFast
        from .models.led import LEDTokenizerFast
        from .models.llama import LlamaTokenizerFast
        from .models.longformer import LongformerTokenizerFast
        from .models.lxmert import LxmertTokenizerFast
        from .models.markuplm import MarkupLMTokenizerFast
        from .models.mbart import MBartTokenizerFast
        from .models.mbart50 import MBart50TokenizerFast
        from .models.mobilebert import MobileBertTokenizerFast
        from .models.mpnet import MPNetTokenizerFast
        from .models.mt5 import MT5TokenizerFast
        from .models.mvp import MvpTokenizerFast
        from .models.nllb import NllbTokenizerFast
        from .models.nougat import NougatTokenizerFast
        from .models.openai import OpenAIGPTTokenizerFast
        from .models.pegasus import PegasusTokenizerFast
        from .models.qwen2 import Qwen2TokenizerFast
        from .models.realm import RealmTokenizerFast
        from .models.reformer import ReformerTokenizerFast
        from .models.rembert import RemBertTokenizerFast
        from .models.roberta import RobertaTokenizerFast
        from .models.roformer import RoFormerTokenizerFast
        from .models.seamless_m4t import SeamlessM4TTokenizerFast
        from .models.splinter import SplinterTokenizerFast
        from .models.squeezebert import SqueezeBertTokenizerFast
        from .models.t5 import T5TokenizerFast
        from .models.udop import UdopTokenizerFast
        from .models.whisper import WhisperTokenizerFast
        from .models.xglm import XGLMTokenizerFast
        from .models.xlm_roberta import XLMRobertaTokenizerFast
        from .models.xlnet import XLNetTokenizerFast
        from .tokenization_utils_fast import PreTrainedTokenizerFast

    try:
        if not (is_sentencepiece_available() and is_tokenizers_available()):
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummies_sentencepiece_and_tokenizers_objects import *
    else:
        from .convert_slow_tokenizer import (
            SLOW_TO_FAST_CONVERTERS,
            convert_slow_tokenizer,
        )

    try:
        if not is_tensorflow_text_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_tensorflow_text_objects import *
    else:
        from .models.bert import TFBertTokenizer

    try:
        if not is_keras_nlp_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_keras_nlp_objects import *
    else:
        from .models.gpt2 import TFGPT2Tokenizer

    try:
        if not is_vision_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_vision_objects import *
    else:
        from .image_processing_utils import ImageProcessingMixin
        from .image_utils import ImageFeatureExtractionMixin
        from .models.beit import BeitFeatureExtractor, BeitImageProcessor
        from .models.bit import BitImageProcessor
        from .models.blip import BlipImageProcessor
        from .models.bridgetower import BridgeTowerImageProcessor
        from .models.chinese_clip import (
            ChineseCLIPFeatureExtractor,
            ChineseCLIPImageProcessor,
        )
        from .models.clip import CLIPFeatureExtractor, CLIPImageProcessor
        from .models.conditional_detr import (
            ConditionalDetrFeatureExtractor,
            ConditionalDetrImageProcessor,
        )
        from .models.convnext import ConvNextFeatureExtractor, ConvNextImageProcessor
        from .models.deformable_detr import (
            DeformableDetrFeatureExtractor,
            DeformableDetrImageProcessor,
        )
        from .models.deit import DeiTFeatureExtractor, DeiTImageProcessor
        from .models.deta import DetaImageProcessor
        from .models.detr import DetrFeatureExtractor, DetrImageProcessor
        from .models.donut import DonutFeatureExtractor, DonutImageProcessor
        from .models.dpt import DPTFeatureExtractor, DPTImageProcessor
        from .models.efficientformer import EfficientFormerImageProcessor
        from .models.efficientnet import EfficientNetImageProcessor
        from .models.flava import (
            FlavaFeatureExtractor,
            FlavaImageProcessor,
            FlavaProcessor,
        )
        from .models.fuyu import FuyuImageProcessor, FuyuProcessor
        from .models.glpn import GLPNFeatureExtractor, GLPNImageProcessor
        from .models.idefics import IdeficsImageProcessor
        from .models.imagegpt import ImageGPTFeatureExtractor, ImageGPTImageProcessor
        from .models.layoutlmv2 import (
            LayoutLMv2FeatureExtractor,
            LayoutLMv2ImageProcessor,
        )
        from .models.layoutlmv3 import (
            LayoutLMv3FeatureExtractor,
            LayoutLMv3ImageProcessor,
        )
        from .models.levit import LevitFeatureExtractor, LevitImageProcessor
        from .models.llava_next import LlavaNextImageProcessor
        from .models.mask2former import Mask2FormerImageProcessor
        from .models.maskformer import (
            MaskFormerFeatureExtractor,
            MaskFormerImageProcessor,
        )
        from .models.mobilenet_v1 import (
            MobileNetV1FeatureExtractor,
            MobileNetV1ImageProcessor,
        )
        from .models.mobilenet_v2 import (
            MobileNetV2FeatureExtractor,
            MobileNetV2ImageProcessor,
        )
        from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor
        from .models.nougat import NougatImageProcessor
        from .models.oneformer import OneFormerImageProcessor
        from .models.owlv2 import Owlv2ImageProcessor
        from .models.owlvit import OwlViTFeatureExtractor, OwlViTImageProcessor
        from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor
        from .models.pix2struct import Pix2StructImageProcessor
        from .models.poolformer import (
            PoolFormerFeatureExtractor,
            PoolFormerImageProcessor,
        )
        from .models.pvt import PvtImageProcessor
        from .models.sam import SamImageProcessor
        from .models.segformer import SegformerFeatureExtractor, SegformerImageProcessor
        from .models.seggpt import SegGptImageProcessor
        from .models.siglip import SiglipImageProcessor
        from .models.superpoint import SuperPointImageProcessor
        from .models.swin2sr import Swin2SRImageProcessor
        from .models.tvlt import TvltImageProcessor
        from .models.tvp import TvpImageProcessor
        from .models.videomae import VideoMAEFeatureExtractor, VideoMAEImageProcessor
        from .models.vilt import ViltFeatureExtractor, ViltImageProcessor, ViltProcessor
        from .models.vit import ViTFeatureExtractor, ViTImageProcessor
        from .models.vit_hybrid import ViTHybridImageProcessor
        from .models.vitmatte import VitMatteImageProcessor
        from .models.vivit import VivitImageProcessor
        from .models.yolos import YolosFeatureExtractor, YolosImageProcessor

    # Modeling
    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_pt_objects import *
    else:
        # Benchmarks
        from .benchmark.benchmark import PyTorchBenchmark
        from .benchmark.benchmark_args import PyTorchBenchmarkArguments
        from .cache_utils import Cache, DynamicCache, SinkCache, StaticCache
        from .data.datasets import (
            GlueDataset,
            GlueDataTrainingArguments,
            LineByLineTextDataset,
            LineByLineWithRefDataset,
            LineByLineWithSOPTextDataset,
            SquadDataset,
            SquadDataTrainingArguments,
            TextDataset,
            TextDatasetForNextSentencePrediction,
        )
        from .generation import (
            AlternatingCodebooksLogitsProcessor,
            BeamScorer,
            BeamSearchScorer,
            ClassifierFreeGuidanceLogitsProcessor,
            ConstrainedBeamSearchScorer,
            Constraint,
            ConstraintListState,
            DisjunctiveConstraint,
            EncoderNoRepeatNGramLogitsProcessor,
            EncoderRepetitionPenaltyLogitsProcessor,
            EpsilonLogitsWarper,
            EtaLogitsWarper,
            ExponentialDecayLengthPenalty,
            ForcedBOSTokenLogitsProcessor,
            ForcedEOSTokenLogitsProcessor,
            ForceTokensLogitsProcessor,
            GenerationMixin,
            HammingDiversityLogitsProcessor,
            InfNanRemoveLogitsProcessor,
            LogitNormalization,
            LogitsProcessor,
            LogitsProcessorList,
            LogitsWarper,
            MaxLengthCriteria,
            MaxTimeCriteria,
            MinLengthLogitsProcessor,
            MinNewTokensLengthLogitsProcessor,
            NoBadWordsLogitsProcessor,
            NoRepeatNGramLogitsProcessor,
            PhrasalConstraint,
            PrefixConstrainedLogitsProcessor,
            RepetitionPenaltyLogitsProcessor,
            SequenceBiasLogitsProcessor,
            StoppingCriteria,
            StoppingCriteriaList,
            SuppressTokensAtBeginLogitsProcessor,
            SuppressTokensLogitsProcessor,
            TemperatureLogitsWarper,
            TopKLogitsWarper,
            TopPLogitsWarper,
            TypicalLogitsWarper,
            UnbatchedClassifierFreeGuidanceLogitsProcessor,
            WhisperTimeStampLogitsProcessor,
        )
        from .modeling_utils import PreTrainedModel
        from .models.albert import (
            ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            AlbertForMaskedLM,
            AlbertForMultipleChoice,
            AlbertForPreTraining,
            AlbertForQuestionAnswering,
            AlbertForSequenceClassification,
            AlbertForTokenClassification,
            AlbertModel,
            AlbertPreTrainedModel,
            load_tf_weights_in_albert,
        )
        from .models.align import (
            ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST,
            AlignModel,
            AlignPreTrainedModel,
            AlignTextModel,
            AlignVisionModel,
        )
        from .models.altclip import (
            ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            AltCLIPModel,
            AltCLIPPreTrainedModel,
            AltCLIPTextModel,
            AltCLIPVisionModel,
        )
        from .models.audio_spectrogram_transformer import (
            AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            ASTForAudioClassification,
            ASTModel,
            ASTPreTrainedModel,
        )
        from .models.auto import (
            MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
            MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING,
            MODEL_FOR_AUDIO_XVECTOR_MAPPING,
            MODEL_FOR_BACKBONE_MAPPING,
            MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_CTC_MAPPING,
            MODEL_FOR_DEPTH_ESTIMATION_MAPPING,
            MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
            MODEL_FOR_IMAGE_MAPPING,
            MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
            MODEL_FOR_IMAGE_TO_IMAGE_MAPPING,
            MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
            MODEL_FOR_KEYPOINT_DETECTION_MAPPING,
            MODEL_FOR_MASK_GENERATION_MAPPING,
            MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            MODEL_FOR_OBJECT_DETECTION_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_TEXT_ENCODING_MAPPING,
            MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING,
            MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
            MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
            MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING,
            MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
            MODEL_FOR_VISION_2_SEQ_MAPPING,
            MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING,
            MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING,
            MODEL_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
            AutoBackbone,
            AutoModel,
            AutoModelForAudioClassification,
            AutoModelForAudioFrameClassification,
            AutoModelForAudioXVector,
            AutoModelForCausalLM,
            AutoModelForCTC,
            AutoModelForDepthEstimation,
            AutoModelForDocumentQuestionAnswering,
            AutoModelForImageClassification,
            AutoModelForImageSegmentation,
            AutoModelForImageToImage,
            AutoModelForInstanceSegmentation,
            AutoModelForKeypointDetection,
            AutoModelForMaskedImageModeling,
            AutoModelForMaskedLM,
            AutoModelForMaskGeneration,
            AutoModelForMultipleChoice,
            AutoModelForNextSentencePrediction,
            AutoModelForObjectDetection,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSemanticSegmentation,
            AutoModelForSeq2SeqLM,
            AutoModelForSequenceClassification,
            AutoModelForSpeechSeq2Seq,
            AutoModelForTableQuestionAnswering,
            AutoModelForTextEncoding,
            AutoModelForTextToSpectrogram,
            AutoModelForTextToWaveform,
            AutoModelForTokenClassification,
            AutoModelForUniversalSegmentation,
            AutoModelForVideoClassification,
            AutoModelForVision2Seq,
            AutoModelForVisualQuestionAnswering,
            AutoModelForZeroShotImageClassification,
            AutoModelForZeroShotObjectDetection,
            AutoModelWithLMHead,
        )
        from .models.autoformer import (
            AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            AutoformerForPrediction,
            AutoformerModel,
            AutoformerPreTrainedModel,
        )
        from .models.bark import (
            BARK_PRETRAINED_MODEL_ARCHIVE_LIST,
            BarkCausalModel,
            BarkCoarseModel,
            BarkFineModel,
            BarkModel,
            BarkPreTrainedModel,
            BarkSemanticModel,
        )
        from .models.bart import (
            BART_PRETRAINED_MODEL_ARCHIVE_LIST,
            BartForCausalLM,
            BartForConditionalGeneration,
            BartForQuestionAnswering,
            BartForSequenceClassification,
            BartModel,
            BartPreTrainedModel,
            BartPretrainedModel,
            PretrainedBartModel,
        )
        from .models.beit import (
            BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BeitBackbone,
            BeitForImageClassification,
            BeitForMaskedImageModeling,
            BeitForSemanticSegmentation,
            BeitModel,
            BeitPreTrainedModel,
        )
        from .models.bert import (
            BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BertForMaskedLM,
            BertForMultipleChoice,
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
            BertLayer,
            BertLMHeadModel,
            BertModel,
            BertPreTrainedModel,
            load_tf_weights_in_bert,
        )
        from .models.bert_generation import (
            BertGenerationDecoder,
            BertGenerationEncoder,
            BertGenerationPreTrainedModel,
            load_tf_weights_in_bert_generation,
        )
        from .models.big_bird import (
            BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST,
            BigBirdForCausalLM,
            BigBirdForMaskedLM,
            BigBirdForMultipleChoice,
            BigBirdForPreTraining,
            BigBirdForQuestionAnswering,
            BigBirdForSequenceClassification,
            BigBirdForTokenClassification,
            BigBirdLayer,
            BigBirdModel,
            BigBirdPreTrainedModel,
            load_tf_weights_in_big_bird,
        )
        from .models.bigbird_pegasus import (
            BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
            BigBirdPegasusForCausalLM,
            BigBirdPegasusForConditionalGeneration,
            BigBirdPegasusForQuestionAnswering,
            BigBirdPegasusForSequenceClassification,
            BigBirdPegasusModel,
            BigBirdPegasusPreTrainedModel,
        )
        from .models.biogpt import (
            BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BioGptForCausalLM,
            BioGptForSequenceClassification,
            BioGptForTokenClassification,
            BioGptModel,
            BioGptPreTrainedModel,
        )
        from .models.bit import (
            BIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BitBackbone,
            BitForImageClassification,
            BitModel,
            BitPreTrainedModel,
        )
        from .models.blenderbot import (
            BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BlenderbotForCausalLM,
            BlenderbotForConditionalGeneration,
            BlenderbotModel,
            BlenderbotPreTrainedModel,
        )
        from .models.blenderbot_small import (
            BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
            BlenderbotSmallForCausalLM,
            BlenderbotSmallForConditionalGeneration,
            BlenderbotSmallModel,
            BlenderbotSmallPreTrainedModel,
        )
        from .models.blip import (
            BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            BlipForConditionalGeneration,
            BlipForImageTextRetrieval,
            BlipForQuestionAnswering,
            BlipModel,
            BlipPreTrainedModel,
            BlipTextModel,
            BlipVisionModel,
        )
        from .models.blip_2 import (
            BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Blip2ForConditionalGeneration,
            Blip2Model,
            Blip2PreTrainedModel,
            Blip2QFormerModel,
            Blip2VisionModel,
        )
        from .models.bloom import (
            BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
            BloomForCausalLM,
            BloomForQuestionAnswering,
            BloomForSequenceClassification,
            BloomForTokenClassification,
            BloomModel,
            BloomPreTrainedModel,
        )
        from .models.bridgetower import (
            BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
            BridgeTowerForContrastiveLearning,
            BridgeTowerForImageAndTextRetrieval,
            BridgeTowerForMaskedLM,
            BridgeTowerModel,
            BridgeTowerPreTrainedModel,
        )
        from .models.bros import (
            BROS_PRETRAINED_MODEL_ARCHIVE_LIST,
            BrosForTokenClassification,
            BrosModel,
            BrosPreTrainedModel,
            BrosProcessor,
            BrosSpadeEEForTokenClassification,
            BrosSpadeELForTokenClassification,
        )
        from .models.camembert import (
            CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            CamembertForCausalLM,
            CamembertForMaskedLM,
            CamembertForMultipleChoice,
            CamembertForQuestionAnswering,
            CamembertForSequenceClassification,
            CamembertForTokenClassification,
            CamembertModel,
            CamembertPreTrainedModel,
        )
        from .models.canine import (
            CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
            CanineForMultipleChoice,
            CanineForQuestionAnswering,
            CanineForSequenceClassification,
            CanineForTokenClassification,
            CanineLayer,
            CanineModel,
            CaninePreTrainedModel,
            load_tf_weights_in_canine,
        )
        from .models.chinese_clip import (
            CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            ChineseCLIPModel,
            ChineseCLIPPreTrainedModel,
            ChineseCLIPTextModel,
            ChineseCLIPVisionModel,
        )
        from .models.clap import (
            CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
            ClapAudioModel,
            ClapAudioModelWithProjection,
            ClapFeatureExtractor,
            ClapModel,
            ClapPreTrainedModel,
            ClapTextModel,
            ClapTextModelWithProjection,
        )
        from .models.clip import (
            CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            CLIPForImageClassification,
            CLIPModel,
            CLIPPreTrainedModel,
            CLIPTextModel,
            CLIPTextModelWithProjection,
            CLIPVisionModel,
            CLIPVisionModelWithProjection,
        )
        from .models.clipseg import (
            CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
            CLIPSegForImageSegmentation,
            CLIPSegModel,
            CLIPSegPreTrainedModel,
            CLIPSegTextModel,
            CLIPSegVisionModel,
        )
        from .models.clvp import (
            CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
            ClvpDecoder,
            ClvpEncoder,
            ClvpForCausalLM,
            ClvpModel,
            ClvpModelForConditionalGeneration,
            ClvpPreTrainedModel,
        )
        from .models.codegen import (
            CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
            CodeGenForCausalLM,
            CodeGenModel,
            CodeGenPreTrainedModel,
        )
        from .models.cohere import (
            CohereForCausalLM,
            CohereModel,
            CoherePreTrainedModel,
        )
        from .models.conditional_detr import (
            CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConditionalDetrForObjectDetection,
            ConditionalDetrForSegmentation,
            ConditionalDetrModel,
            ConditionalDetrPreTrainedModel,
        )
        from .models.convbert import (
            CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConvBertForMaskedLM,
            ConvBertForMultipleChoice,
            ConvBertForQuestionAnswering,
            ConvBertForSequenceClassification,
            ConvBertForTokenClassification,
            ConvBertLayer,
            ConvBertModel,
            ConvBertPreTrainedModel,
            load_tf_weights_in_convbert,
        )
        from .models.convnext import (
            CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConvNextBackbone,
            ConvNextForImageClassification,
            ConvNextModel,
            ConvNextPreTrainedModel,
        )
        from .models.convnextv2 import (
            CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConvNextV2Backbone,
            ConvNextV2ForImageClassification,
            ConvNextV2Model,
            ConvNextV2PreTrainedModel,
        )
        from .models.cpmant import (
            CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
            CpmAntForCausalLM,
            CpmAntModel,
            CpmAntPreTrainedModel,
        )
        from .models.ctrl import (
            CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
            CTRLForSequenceClassification,
            CTRLLMHeadModel,
            CTRLModel,
            CTRLPreTrainedModel,
        )
        from .models.cvt import (
            CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
            CvtForImageClassification,
            CvtModel,
            CvtPreTrainedModel,
        )
        from .models.data2vec import (
            DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
            DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
            Data2VecAudioForAudioFrameClassification,
            Data2VecAudioForCTC,
            Data2VecAudioForSequenceClassification,
            Data2VecAudioForXVector,
            Data2VecAudioModel,
            Data2VecAudioPreTrainedModel,
            Data2VecTextForCausalLM,
            Data2VecTextForMaskedLM,
            Data2VecTextForMultipleChoice,
            Data2VecTextForQuestionAnswering,
            Data2VecTextForSequenceClassification,
            Data2VecTextForTokenClassification,
            Data2VecTextModel,
            Data2VecTextPreTrainedModel,
            Data2VecVisionForImageClassification,
            Data2VecVisionForSemanticSegmentation,
            Data2VecVisionModel,
            Data2VecVisionPreTrainedModel,
        )
        from .models.deberta import (
            DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            DebertaForMaskedLM,
            DebertaForQuestionAnswering,
            DebertaForSequenceClassification,
            DebertaForTokenClassification,
            DebertaModel,
            DebertaPreTrainedModel,
        )
        from .models.deberta_v2 import (
            DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            DebertaV2ForMaskedLM,
            DebertaV2ForMultipleChoice,
            DebertaV2ForQuestionAnswering,
            DebertaV2ForSequenceClassification,
            DebertaV2ForTokenClassification,
            DebertaV2Model,
            DebertaV2PreTrainedModel,
        )
        from .models.decision_transformer import (
            DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DecisionTransformerGPT2Model,
            DecisionTransformerGPT2PreTrainedModel,
            DecisionTransformerModel,
            DecisionTransformerPreTrainedModel,
        )
        from .models.deformable_detr import (
            DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
            DeformableDetrForObjectDetection,
            DeformableDetrModel,
            DeformableDetrPreTrainedModel,
        )
        from .models.deit import (
            DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DeiTForImageClassification,
            DeiTForImageClassificationWithTeacher,
            DeiTForMaskedImageModeling,
            DeiTModel,
            DeiTPreTrainedModel,
        )
        from .models.deprecated.mctct import (
            MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MCTCTForCTC,
            MCTCTModel,
            MCTCTPreTrainedModel,
        )
        from .models.deprecated.mmbt import (
            MMBTForClassification,
            MMBTModel,
            ModalEmbeddings,
        )
        from .models.deprecated.open_llama import (
            OpenLlamaForCausalLM,
            OpenLlamaForSequenceClassification,
            OpenLlamaModel,
            OpenLlamaPreTrainedModel,
        )
        from .models.deprecated.retribert import (
            RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            RetriBertModel,
            RetriBertPreTrainedModel,
        )
        from .models.deprecated.trajectory_transformer import (
            TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TrajectoryTransformerModel,
            TrajectoryTransformerPreTrainedModel,
        )
        from .models.deprecated.transfo_xl import (
            TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
            AdaptiveEmbedding,
            TransfoXLForSequenceClassification,
            TransfoXLLMHeadModel,
            TransfoXLModel,
            TransfoXLPreTrainedModel,
            load_tf_weights_in_transfo_xl,
        )
        from .models.deprecated.van import (
            VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
            VanForImageClassification,
            VanModel,
            VanPreTrainedModel,
        )
        from .models.depth_anything import (
            DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST,
            DepthAnythingForDepthEstimation,
            DepthAnythingPreTrainedModel,
        )
        from .models.deta import (
            DETA_PRETRAINED_MODEL_ARCHIVE_LIST,
            DetaForObjectDetection,
            DetaModel,
            DetaPreTrainedModel,
        )
        from .models.detr import (
            DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
            DetrForObjectDetection,
            DetrForSegmentation,
            DetrModel,
            DetrPreTrainedModel,
        )
        from .models.dinat import (
            DINAT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DinatBackbone,
            DinatForImageClassification,
            DinatModel,
            DinatPreTrainedModel,
        )
        from .models.dinov2 import (
            DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Dinov2Backbone,
            Dinov2ForImageClassification,
            Dinov2Model,
            Dinov2PreTrainedModel,
        )
        from .models.distilbert import (
            DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DistilBertForMaskedLM,
            DistilBertForMultipleChoice,
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
            DistilBertModel,
            DistilBertPreTrainedModel,
        )
        from .models.donut import (
            DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
            DonutSwinModel,
            DonutSwinPreTrainedModel,
        )
        from .models.dpr import (
            DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPRContextEncoder,
            DPRPretrainedContextEncoder,
            DPRPreTrainedModel,
            DPRPretrainedQuestionEncoder,
            DPRPretrainedReader,
            DPRQuestionEncoder,
            DPRReader,
        )
        from .models.dpt import (
            DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPTForDepthEstimation,
            DPTForSemanticSegmentation,
            DPTModel,
            DPTPreTrainedModel,
        )
        from .models.efficientformer import (
            EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            EfficientFormerForImageClassification,
            EfficientFormerForImageClassificationWithTeacher,
            EfficientFormerModel,
            EfficientFormerPreTrainedModel,
        )
        from .models.efficientnet import (
            EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            EfficientNetForImageClassification,
            EfficientNetModel,
            EfficientNetPreTrainedModel,
        )
        from .models.electra import (
            ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
            ElectraForCausalLM,
            ElectraForMaskedLM,
            ElectraForMultipleChoice,
            ElectraForPreTraining,
            ElectraForQuestionAnswering,
            ElectraForSequenceClassification,
            ElectraForTokenClassification,
            ElectraModel,
            ElectraPreTrainedModel,
            load_tf_weights_in_electra,
        )
        from .models.encodec import (
            ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
            EncodecModel,
            EncodecPreTrainedModel,
        )
        from .models.encoder_decoder import EncoderDecoderModel
        from .models.ernie import (
            ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
            ErnieForCausalLM,
            ErnieForMaskedLM,
            ErnieForMultipleChoice,
            ErnieForNextSentencePrediction,
            ErnieForPreTraining,
            ErnieForQuestionAnswering,
            ErnieForSequenceClassification,
            ErnieForTokenClassification,
            ErnieModel,
            ErniePreTrainedModel,
        )
        from .models.ernie_m import (
            ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST,
            ErnieMForInformationExtraction,
            ErnieMForMultipleChoice,
            ErnieMForQuestionAnswering,
            ErnieMForSequenceClassification,
            ErnieMForTokenClassification,
            ErnieMModel,
            ErnieMPreTrainedModel,
        )
        from .models.esm import (
            ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
            EsmFoldPreTrainedModel,
            EsmForMaskedLM,
            EsmForProteinFolding,
            EsmForSequenceClassification,
            EsmForTokenClassification,
            EsmModel,
            EsmPreTrainedModel,
        )
        from .models.falcon import (
            FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
            FalconForCausalLM,
            FalconForQuestionAnswering,
            FalconForSequenceClassification,
            FalconForTokenClassification,
            FalconModel,
            FalconPreTrainedModel,
        )
        from .models.fastspeech2_conformer import (
            FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            FastSpeech2ConformerHifiGan,
            FastSpeech2ConformerModel,
            FastSpeech2ConformerPreTrainedModel,
            FastSpeech2ConformerWithHifiGan,
        )
        from .models.flaubert import (
            FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            FlaubertForMultipleChoice,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
            FlaubertForTokenClassification,
            FlaubertModel,
            FlaubertPreTrainedModel,
            FlaubertWithLMHeadModel,
        )
        from .models.flava import (
            FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
            FlavaForPreTraining,
            FlavaImageCodebook,
            FlavaImageModel,
            FlavaModel,
            FlavaMultimodalModel,
            FlavaPreTrainedModel,
            FlavaTextModel,
        )
        from .models.fnet import (
            FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            FNetForMaskedLM,
            FNetForMultipleChoice,
            FNetForNextSentencePrediction,
            FNetForPreTraining,
            FNetForQuestionAnswering,
            FNetForSequenceClassification,
            FNetForTokenClassification,
            FNetLayer,
            FNetModel,
            FNetPreTrainedModel,
        )
        from .models.focalnet import (
            FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            FocalNetBackbone,
            FocalNetForImageClassification,
            FocalNetForMaskedImageModeling,
            FocalNetModel,
            FocalNetPreTrainedModel,
        )
        from .models.fsmt import (
            FSMTForConditionalGeneration,
            FSMTModel,
            PretrainedFSMTModel,
        )
        from .models.funnel import (
            FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
            FunnelBaseModel,
            FunnelForMaskedLM,
            FunnelForMultipleChoice,
            FunnelForPreTraining,
            FunnelForQuestionAnswering,
            FunnelForSequenceClassification,
            FunnelForTokenClassification,
            FunnelModel,
            FunnelPreTrainedModel,
            load_tf_weights_in_funnel,
        )
        from .models.fuyu import (
            FuyuForCausalLM,
            FuyuPreTrainedModel,
        )
        from .models.gemma import (
            GemmaForCausalLM,
            GemmaForSequenceClassification,
            GemmaModel,
            GemmaPreTrainedModel,
        )
        from .models.git import (
            GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            GitForCausalLM,
            GitModel,
            GitPreTrainedModel,
            GitVisionModel,
        )
        from .models.glpn import (
            GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
            GLPNForDepthEstimation,
            GLPNModel,
            GLPNPreTrainedModel,
        )
        from .models.gpt2 import (
            GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPT2DoubleHeadsModel,
            GPT2ForQuestionAnswering,
            GPT2ForSequenceClassification,
            GPT2ForTokenClassification,
            GPT2LMHeadModel,
            GPT2Model,
            GPT2PreTrainedModel,
            load_tf_weights_in_gpt2,
        )
        from .models.gpt_bigcode import (
            GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTBigCodeForCausalLM,
            GPTBigCodeForSequenceClassification,
            GPTBigCodeForTokenClassification,
            GPTBigCodeModel,
            GPTBigCodePreTrainedModel,
        )
        from .models.gpt_neo import (
            GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTNeoForCausalLM,
            GPTNeoForQuestionAnswering,
            GPTNeoForSequenceClassification,
            GPTNeoForTokenClassification,
            GPTNeoModel,
            GPTNeoPreTrainedModel,
            load_tf_weights_in_gpt_neo,
        )
        from .models.gpt_neox import (
            GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTNeoXForCausalLM,
            GPTNeoXForQuestionAnswering,
            GPTNeoXForSequenceClassification,
            GPTNeoXForTokenClassification,
            GPTNeoXLayer,
            GPTNeoXModel,
            GPTNeoXPreTrainedModel,
        )
        from .models.gpt_neox_japanese import (
            GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTNeoXJapaneseForCausalLM,
            GPTNeoXJapaneseLayer,
            GPTNeoXJapaneseModel,
            GPTNeoXJapanesePreTrainedModel,
        )
        from .models.gptj import (
            GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTJForCausalLM,
            GPTJForQuestionAnswering,
            GPTJForSequenceClassification,
            GPTJModel,
            GPTJPreTrainedModel,
        )
        from .models.gptsan_japanese import (
            GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTSanJapaneseForConditionalGeneration,
            GPTSanJapaneseModel,
            GPTSanJapanesePreTrainedModel,
        )
        from .models.graphormer import (
            GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            GraphormerForGraphClassification,
            GraphormerModel,
            GraphormerPreTrainedModel,
        )
        from .models.groupvit import (
            GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            GroupViTModel,
            GroupViTPreTrainedModel,
            GroupViTTextModel,
            GroupViTVisionModel,
        )
        from .models.hubert import (
            HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            HubertForCTC,
            HubertForSequenceClassification,
            HubertModel,
            HubertPreTrainedModel,
        )
        from .models.ibert import (
            IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            IBertForMaskedLM,
            IBertForMultipleChoice,
            IBertForQuestionAnswering,
            IBertForSequenceClassification,
            IBertForTokenClassification,
            IBertModel,
            IBertPreTrainedModel,
        )
        from .models.idefics import (
            IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST,
            IdeficsForVisionText2Text,
            IdeficsModel,
            IdeficsPreTrainedModel,
            IdeficsProcessor,
        )
        from .models.imagegpt import (
            IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ImageGPTForCausalImageModeling,
            ImageGPTForImageClassification,
            ImageGPTModel,
            ImageGPTPreTrainedModel,
            load_tf_weights_in_imagegpt,
        )
        from .models.informer import (
            INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            InformerForPrediction,
            InformerModel,
            InformerPreTrainedModel,
        )
        from .models.instructblip import (
            INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            InstructBlipForConditionalGeneration,
            InstructBlipPreTrainedModel,
            InstructBlipQFormerModel,
            InstructBlipVisionModel,
        )
        from .models.jukebox import (
            JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
            JukeboxModel,
            JukeboxPreTrainedModel,
            JukeboxPrior,
            JukeboxVQVAE,
        )
        from .models.kosmos2 import (
            KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Kosmos2ForConditionalGeneration,
            Kosmos2Model,
            Kosmos2PreTrainedModel,
        )
        from .models.layoutlm import (
            LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            LayoutLMForMaskedLM,
            LayoutLMForQuestionAnswering,
            LayoutLMForSequenceClassification,
            LayoutLMForTokenClassification,
            LayoutLMModel,
            LayoutLMPreTrainedModel,
        )
        from .models.layoutlmv2 import (
            LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            LayoutLMv2ForQuestionAnswering,
            LayoutLMv2ForSequenceClassification,
            LayoutLMv2ForTokenClassification,
            LayoutLMv2Model,
            LayoutLMv2PreTrainedModel,
        )
        from .models.layoutlmv3 import (
            LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
            LayoutLMv3ForQuestionAnswering,
            LayoutLMv3ForSequenceClassification,
            LayoutLMv3ForTokenClassification,
            LayoutLMv3Model,
            LayoutLMv3PreTrainedModel,
        )
        from .models.led import (
            LED_PRETRAINED_MODEL_ARCHIVE_LIST,
            LEDForConditionalGeneration,
            LEDForQuestionAnswering,
            LEDForSequenceClassification,
            LEDModel,
            LEDPreTrainedModel,
        )
        from .models.levit import (
            LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            LevitForImageClassification,
            LevitForImageClassificationWithTeacher,
            LevitModel,
            LevitPreTrainedModel,
        )
        from .models.lilt import (
            LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
            LiltForQuestionAnswering,
            LiltForSequenceClassification,
            LiltForTokenClassification,
            LiltModel,
            LiltPreTrainedModel,
        )
        from .models.llama import (
            LlamaForCausalLM,
            LlamaForQuestionAnswering,
            LlamaForSequenceClassification,
            LlamaModel,
            LlamaPreTrainedModel,
        )
        from .models.llava import (
            LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
            LlavaForConditionalGeneration,
            LlavaPreTrainedModel,
        )
        from .models.llava_next import (
            LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            LlavaNextForConditionalGeneration,
            LlavaNextPreTrainedModel,
        )
        from .models.longformer import (
            LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            LongformerForMaskedLM,
            LongformerForMultipleChoice,
            LongformerForQuestionAnswering,
            LongformerForSequenceClassification,
            LongformerForTokenClassification,
            LongformerModel,
            LongformerPreTrainedModel,
            LongformerSelfAttention,
        )
        from .models.longt5 import (
            LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
            LongT5EncoderModel,
            LongT5ForConditionalGeneration,
            LongT5Model,
            LongT5PreTrainedModel,
        )
        from .models.luke import (
            LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
            LukeForEntityClassification,
            LukeForEntityPairClassification,
            LukeForEntitySpanClassification,
            LukeForMaskedLM,
            LukeForMultipleChoice,
            LukeForQuestionAnswering,
            LukeForSequenceClassification,
            LukeForTokenClassification,
            LukeModel,
            LukePreTrainedModel,
        )
        from .models.lxmert import (
            LxmertEncoder,
            LxmertForPreTraining,
            LxmertForQuestionAnswering,
            LxmertModel,
            LxmertPreTrainedModel,
            LxmertVisualFeatureEncoder,
            LxmertXLayer,
        )
        from .models.m2m_100 import (
            M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
            M2M100ForConditionalGeneration,
            M2M100Model,
            M2M100PreTrainedModel,
        )
        from .models.mamba import (
            MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST,
            MambaForCausalLM,
            MambaModel,
            MambaPreTrainedModel,
        )
        from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel
        from .models.markuplm import (
            MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            MarkupLMForQuestionAnswering,
            MarkupLMForSequenceClassification,
            MarkupLMForTokenClassification,
            MarkupLMModel,
            MarkupLMPreTrainedModel,
        )
        from .models.mask2former import (
            MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            Mask2FormerForUniversalSegmentation,
            Mask2FormerModel,
            Mask2FormerPreTrainedModel,
        )
        from .models.maskformer import (
            MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            MaskFormerForInstanceSegmentation,
            MaskFormerModel,
            MaskFormerPreTrainedModel,
            MaskFormerSwinBackbone,
        )
        from .models.mbart import (
            MBartForCausalLM,
            MBartForConditionalGeneration,
            MBartForQuestionAnswering,
            MBartForSequenceClassification,
            MBartModel,
            MBartPreTrainedModel,
        )
        from .models.mega import (
            MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
            MegaForCausalLM,
            MegaForMaskedLM,
            MegaForMultipleChoice,
            MegaForQuestionAnswering,
            MegaForSequenceClassification,
            MegaForTokenClassification,
            MegaModel,
            MegaPreTrainedModel,
        )
        from .models.megatron_bert import (
            MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MegatronBertForCausalLM,
            MegatronBertForMaskedLM,
            MegatronBertForMultipleChoice,
            MegatronBertForNextSentencePrediction,
            MegatronBertForPreTraining,
            MegatronBertForQuestionAnswering,
            MegatronBertForSequenceClassification,
            MegatronBertForTokenClassification,
            MegatronBertModel,
            MegatronBertPreTrainedModel,
        )
        from .models.mgp_str import (
            MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
            MgpstrForSceneTextRecognition,
            MgpstrModel,
            MgpstrPreTrainedModel,
        )
        from .models.mistral import (
            MistralForCausalLM,
            MistralForSequenceClassification,
            MistralModel,
            MistralPreTrainedModel,
        )
        from .models.mixtral import (
            MixtralForCausalLM,
            MixtralForSequenceClassification,
            MixtralModel,
            MixtralPreTrainedModel,
        )
        from .models.mobilebert import (
            MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileBertForMaskedLM,
            MobileBertForMultipleChoice,
            MobileBertForNextSentencePrediction,
            MobileBertForPreTraining,
            MobileBertForQuestionAnswering,
            MobileBertForSequenceClassification,
            MobileBertForTokenClassification,
            MobileBertLayer,
            MobileBertModel,
            MobileBertPreTrainedModel,
            load_tf_weights_in_mobilebert,
        )
        from .models.mobilenet_v1 import (
            MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileNetV1ForImageClassification,
            MobileNetV1Model,
            MobileNetV1PreTrainedModel,
            load_tf_weights_in_mobilenet_v1,
        )
        from .models.mobilenet_v2 import (
            MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileNetV2ForImageClassification,
            MobileNetV2ForSemanticSegmentation,
            MobileNetV2Model,
            MobileNetV2PreTrainedModel,
            load_tf_weights_in_mobilenet_v2,
        )
        from .models.mobilevit import (
            MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileViTForImageClassification,
            MobileViTForSemanticSegmentation,
            MobileViTModel,
            MobileViTPreTrainedModel,
        )
        from .models.mobilevitv2 import (
            MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileViTV2ForImageClassification,
            MobileViTV2ForSemanticSegmentation,
            MobileViTV2Model,
            MobileViTV2PreTrainedModel,
        )
        from .models.mpnet import (
            MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            MPNetForMaskedLM,
            MPNetForMultipleChoice,
            MPNetForQuestionAnswering,
            MPNetForSequenceClassification,
            MPNetForTokenClassification,
            MPNetLayer,
            MPNetModel,
            MPNetPreTrainedModel,
        )
        from .models.mpt import (
            MPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MptForCausalLM,
            MptForQuestionAnswering,
            MptForSequenceClassification,
            MptForTokenClassification,
            MptModel,
            MptPreTrainedModel,
        )
        from .models.mra import (
            MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
            MraForMaskedLM,
            MraForMultipleChoice,
            MraForQuestionAnswering,
            MraForSequenceClassification,
            MraForTokenClassification,
            MraModel,
            MraPreTrainedModel,
        )
        from .models.mt5 import (
            MT5EncoderModel,
            MT5ForConditionalGeneration,
            MT5ForQuestionAnswering,
            MT5ForSequenceClassification,
            MT5ForTokenClassification,
            MT5Model,
            MT5PreTrainedModel,
        )
        from .models.musicgen import (
            MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
            MusicgenForCausalLM,
            MusicgenForConditionalGeneration,
            MusicgenModel,
            MusicgenPreTrainedModel,
            MusicgenProcessor,
        )
        from .models.musicgen_melody import (
            MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST,
            MusicgenMelodyForCausalLM,
            MusicgenMelodyForConditionalGeneration,
            MusicgenMelodyModel,
            MusicgenMelodyPreTrainedModel,
        )
        from .models.mvp import (
            MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
            MvpForCausalLM,
            MvpForConditionalGeneration,
            MvpForQuestionAnswering,
            MvpForSequenceClassification,
            MvpModel,
            MvpPreTrainedModel,
        )
        from .models.nat import (
            NAT_PRETRAINED_MODEL_ARCHIVE_LIST,
            NatBackbone,
            NatForImageClassification,
            NatModel,
            NatPreTrainedModel,
        )
        from .models.nezha import (
            NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
            NezhaForMaskedLM,
            NezhaForMultipleChoice,
            NezhaForNextSentencePrediction,
            NezhaForPreTraining,
            NezhaForQuestionAnswering,
            NezhaForSequenceClassification,
            NezhaForTokenClassification,
            NezhaModel,
            NezhaPreTrainedModel,
        )
        from .models.nllb_moe import (
            NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
            NllbMoeForConditionalGeneration,
            NllbMoeModel,
            NllbMoePreTrainedModel,
            NllbMoeSparseMLP,
            NllbMoeTop2Router,
        )
        from .models.nystromformer import (
            NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            NystromformerForMaskedLM,
            NystromformerForMultipleChoice,
            NystromformerForQuestionAnswering,
            NystromformerForSequenceClassification,
            NystromformerForTokenClassification,
            NystromformerLayer,
            NystromformerModel,
            NystromformerPreTrainedModel,
        )
        from .models.oneformer import (
            ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            OneFormerForUniversalSegmentation,
            OneFormerModel,
            OneFormerPreTrainedModel,
        )
        from .models.openai import (
            OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            OpenAIGPTDoubleHeadsModel,
            OpenAIGPTForSequenceClassification,
            OpenAIGPTLMHeadModel,
            OpenAIGPTModel,
            OpenAIGPTPreTrainedModel,
            load_tf_weights_in_openai_gpt,
        )
        from .models.opt import (
            OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            OPTForCausalLM,
            OPTForQuestionAnswering,
            OPTForSequenceClassification,
            OPTModel,
            OPTPreTrainedModel,
        )
        from .models.owlv2 import (
            OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Owlv2ForObjectDetection,
            Owlv2Model,
            Owlv2PreTrainedModel,
            Owlv2TextModel,
            Owlv2VisionModel,
        )
        from .models.owlvit import (
            OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            OwlViTForObjectDetection,
            OwlViTModel,
            OwlViTPreTrainedModel,
            OwlViTTextModel,
            OwlViTVisionModel,
        )
        from .models.patchtsmixer import (
            PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST,
            PatchTSMixerForPrediction,
            PatchTSMixerForPretraining,
            PatchTSMixerForRegression,
            PatchTSMixerForTimeSeriesClassification,
            PatchTSMixerModel,
            PatchTSMixerPreTrainedModel,
        )
        from .models.patchtst import (
            PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST,
            PatchTSTForClassification,
            PatchTSTForPrediction,
            PatchTSTForPretraining,
            PatchTSTForRegression,
            PatchTSTModel,
            PatchTSTPreTrainedModel,
        )
        from .models.pegasus import (
            PegasusForCausalLM,
            PegasusForConditionalGeneration,
            PegasusModel,
            PegasusPreTrainedModel,
        )
        from .models.pegasus_x import (
            PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
            PegasusXForConditionalGeneration,
            PegasusXModel,
            PegasusXPreTrainedModel,
        )
        from .models.perceiver import (
            PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
            PerceiverForImageClassificationConvProcessing,
            PerceiverForImageClassificationFourier,
            PerceiverForImageClassificationLearned,
            PerceiverForMaskedLM,
            PerceiverForMultimodalAutoencoding,
            PerceiverForOpticalFlow,
            PerceiverForSequenceClassification,
            PerceiverLayer,
            PerceiverModel,
            PerceiverPreTrainedModel,
        )
        from .models.persimmon import (
            PersimmonForCausalLM,
            PersimmonForSequenceClassification,
            PersimmonModel,
            PersimmonPreTrainedModel,
        )
        from .models.phi import (
            PHI_PRETRAINED_MODEL_ARCHIVE_LIST,
            PhiForCausalLM,
            PhiForSequenceClassification,
            PhiForTokenClassification,
            PhiModel,
            PhiPreTrainedModel,
        )
        from .models.pix2struct import (
            PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
            Pix2StructForConditionalGeneration,
            Pix2StructPreTrainedModel,
            Pix2StructTextModel,
            Pix2StructVisionModel,
        )
        from .models.plbart import (
            PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
            PLBartForCausalLM,
            PLBartForConditionalGeneration,
            PLBartForSequenceClassification,
            PLBartModel,
            PLBartPreTrainedModel,
        )
        from .models.poolformer import (
            POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            PoolFormerForImageClassification,
            PoolFormerModel,
            PoolFormerPreTrainedModel,
        )
        from .models.pop2piano import (
            POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST,
            Pop2PianoForConditionalGeneration,
            Pop2PianoPreTrainedModel,
        )
        from .models.prophetnet import (
            PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            ProphetNetDecoder,
            ProphetNetEncoder,
            ProphetNetForCausalLM,
            ProphetNetForConditionalGeneration,
            ProphetNetModel,
            ProphetNetPreTrainedModel,
        )
        from .models.pvt import (
            PVT_PRETRAINED_MODEL_ARCHIVE_LIST,
            PvtForImageClassification,
            PvtModel,
            PvtPreTrainedModel,
        )
        from .models.pvt_v2 import (
            PVT_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            PvtV2Backbone,
            PvtV2ForImageClassification,
            PvtV2Model,
            PvtV2PreTrainedModel,
        )
        from .models.qdqbert import (
            QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            QDQBertForMaskedLM,
            QDQBertForMultipleChoice,
            QDQBertForNextSentencePrediction,
            QDQBertForQuestionAnswering,
            QDQBertForSequenceClassification,
            QDQBertForTokenClassification,
            QDQBertLayer,
            QDQBertLMHeadModel,
            QDQBertModel,
            QDQBertPreTrainedModel,
            load_tf_weights_in_qdqbert,
        )
        from .models.qwen2 import (
            Qwen2ForCausalLM,
            Qwen2ForSequenceClassification,
            Qwen2Model,
            Qwen2PreTrainedModel,
        )
        from .models.rag import (
            RagModel,
            RagPreTrainedModel,
            RagSequenceForGeneration,
            RagTokenForGeneration,
        )
        from .models.realm import (
            REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
            RealmEmbedder,
            RealmForOpenQA,
            RealmKnowledgeAugEncoder,
            RealmPreTrainedModel,
            RealmReader,
            RealmRetriever,
            RealmScorer,
            load_tf_weights_in_realm,
        )
        from .models.reformer import (
            REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            ReformerAttention,
            ReformerForMaskedLM,
            ReformerForQuestionAnswering,
            ReformerForSequenceClassification,
            ReformerLayer,
            ReformerModel,
            ReformerModelWithLMHead,
            ReformerPreTrainedModel,
        )
        from .models.regnet import (
            REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            RegNetForImageClassification,
            RegNetModel,
            RegNetPreTrainedModel,
        )
        from .models.rembert import (
            REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            RemBertForCausalLM,
            RemBertForMaskedLM,
            RemBertForMultipleChoice,
            RemBertForQuestionAnswering,
            RemBertForSequenceClassification,
            RemBertForTokenClassification,
            RemBertLayer,
            RemBertModel,
            RemBertPreTrainedModel,
            load_tf_weights_in_rembert,
        )
        from .models.resnet import (
            RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            ResNetBackbone,
            ResNetForImageClassification,
            ResNetModel,
            ResNetPreTrainedModel,
        )
        from .models.roberta import (
            ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            RobertaForCausalLM,
            RobertaForMaskedLM,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaModel,
            RobertaPreTrainedModel,
        )
        from .models.roberta_prelayernorm import (
            ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
            RobertaPreLayerNormForCausalLM,
            RobertaPreLayerNormForMaskedLM,
            RobertaPreLayerNormForMultipleChoice,
            RobertaPreLayerNormForQuestionAnswering,
            RobertaPreLayerNormForSequenceClassification,
            RobertaPreLayerNormForTokenClassification,
            RobertaPreLayerNormModel,
            RobertaPreLayerNormPreTrainedModel,
        )
        from .models.roc_bert import (
            ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            RoCBertForCausalLM,
            RoCBertForMaskedLM,
            RoCBertForMultipleChoice,
            RoCBertForPreTraining,
            RoCBertForQuestionAnswering,
            RoCBertForSequenceClassification,
            RoCBertForTokenClassification,
            RoCBertLayer,
            RoCBertModel,
            RoCBertPreTrainedModel,
            load_tf_weights_in_roc_bert,
        )
        from .models.roformer import (
            ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            RoFormerForCausalLM,
            RoFormerForMaskedLM,
            RoFormerForMultipleChoice,
            RoFormerForQuestionAnswering,
            RoFormerForSequenceClassification,
            RoFormerForTokenClassification,
            RoFormerLayer,
            RoFormerModel,
            RoFormerPreTrainedModel,
            load_tf_weights_in_roformer,
        )
        from .models.rwkv import (
            RWKV_PRETRAINED_MODEL_ARCHIVE_LIST,
            RwkvForCausalLM,
            RwkvModel,
            RwkvPreTrainedModel,
        )
        from .models.sam import (
            SAM_PRETRAINED_MODEL_ARCHIVE_LIST,
            SamModel,
            SamPreTrainedModel,
        )

        # PyTorch model imports
        from .models.seamless_m4t import (
            SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST,
            SeamlessM4TCodeHifiGan,
            SeamlessM4TForSpeechToSpeech,
            SeamlessM4TForSpeechToText,
            SeamlessM4TForTextToSpeech,
            SeamlessM4TForTextToText,
            SeamlessM4THifiGan,
            SeamlessM4TModel,
            SeamlessM4TPreTrainedModel,
            SeamlessM4TTextToUnitForConditionalGeneration,
            SeamlessM4TTextToUnitModel,
        )
        from .models.seamless_m4t_v2 import (
            SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            SeamlessM4Tv2ForSpeechToSpeech,
            SeamlessM4Tv2ForSpeechToText,
            SeamlessM4Tv2ForTextToSpeech,
            SeamlessM4Tv2ForTextToText,
            SeamlessM4Tv2Model,
            SeamlessM4Tv2PreTrainedModel,
        )
        from .models.segformer import (
            SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            SegformerDecodeHead,
            SegformerForImageClassification,
            SegformerForSemanticSegmentation,
            SegformerLayer,
            SegformerModel,
            SegformerPreTrainedModel,
        )
        from .models.seggpt import (
            SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            SegGptForImageSegmentation,
            SegGptModel,
            SegGptPreTrainedModel,
        )
        from .models.sew import (
            SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
            SEWForCTC,
            SEWForSequenceClassification,
            SEWModel,
            SEWPreTrainedModel,
        )
        from .models.sew_d import (
            SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST,
            SEWDForCTC,
            SEWDForSequenceClassification,
            SEWDModel,
            SEWDPreTrainedModel,
        )
        from .models.siglip import (
            SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            SiglipForImageClassification,
            SiglipModel,
            SiglipPreTrainedModel,
            SiglipTextModel,
            SiglipVisionModel,
        )
        from .models.speech_encoder_decoder import SpeechEncoderDecoderModel
        from .models.speech_to_text import (
            SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            Speech2TextForConditionalGeneration,
            Speech2TextModel,
            Speech2TextPreTrainedModel,
        )
        from .models.speech_to_text_2 import (
            Speech2Text2ForCausalLM,
            Speech2Text2PreTrainedModel,
        )
        from .models.speecht5 import (
            SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
            SpeechT5ForSpeechToSpeech,
            SpeechT5ForSpeechToText,
            SpeechT5ForTextToSpeech,
            SpeechT5HifiGan,
            SpeechT5Model,
            SpeechT5PreTrainedModel,
        )
        from .models.splinter import (
            SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
            SplinterForPreTraining,
            SplinterForQuestionAnswering,
            SplinterLayer,
            SplinterModel,
            SplinterPreTrainedModel,
        )
        from .models.squeezebert import (
            SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            SqueezeBertForMaskedLM,
            SqueezeBertForMultipleChoice,
            SqueezeBertForQuestionAnswering,
            SqueezeBertForSequenceClassification,
            SqueezeBertForTokenClassification,
            SqueezeBertModel,
            SqueezeBertModule,
            SqueezeBertPreTrainedModel,
        )
        from .models.stablelm import (
            StableLmForCausalLM,
            StableLmForSequenceClassification,
            StableLmModel,
            StableLmPreTrainedModel,
        )
        from .models.starcoder2 import (
            Starcoder2ForCausalLM,
            Starcoder2ForSequenceClassification,
            Starcoder2Model,
            Starcoder2PreTrainedModel,
        )
        from .models.superpoint import (
            SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST,
            SuperPointForKeypointDetection,
            SuperPointPreTrainedModel,
        )
        from .models.swiftformer import (
            SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            SwiftFormerForImageClassification,
            SwiftFormerModel,
            SwiftFormerPreTrainedModel,
        )
        from .models.swin import (
            SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
            SwinBackbone,
            SwinForImageClassification,
            SwinForMaskedImageModeling,
            SwinModel,
            SwinPreTrainedModel,
        )
        from .models.swin2sr import (
            SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST,
            Swin2SRForImageSuperResolution,
            Swin2SRModel,
            Swin2SRPreTrainedModel,
        )
        from .models.swinv2 import (
            SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Swinv2Backbone,
            Swinv2ForImageClassification,
            Swinv2ForMaskedImageModeling,
            Swinv2Model,
            Swinv2PreTrainedModel,
        )
        from .models.switch_transformers import (
            SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST,
            SwitchTransformersEncoderModel,
            SwitchTransformersForConditionalGeneration,
            SwitchTransformersModel,
            SwitchTransformersPreTrainedModel,
            SwitchTransformersSparseMLP,
            SwitchTransformersTop1Router,
        )
        from .models.t5 import (
            T5_PRETRAINED_MODEL_ARCHIVE_LIST,
            T5EncoderModel,
            T5ForConditionalGeneration,
            T5ForQuestionAnswering,
            T5ForSequenceClassification,
            T5ForTokenClassification,
            T5Model,
            T5PreTrainedModel,
            load_tf_weights_in_t5,
        )
        from .models.table_transformer import (
            TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TableTransformerForObjectDetection,
            TableTransformerModel,
            TableTransformerPreTrainedModel,
        )
        from .models.tapas import (
            TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
            TapasForMaskedLM,
            TapasForQuestionAnswering,
            TapasForSequenceClassification,
            TapasModel,
            TapasPreTrainedModel,
            load_tf_weights_in_tapas,
        )
        from .models.time_series_transformer import (
            TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TimeSeriesTransformerForPrediction,
            TimeSeriesTransformerModel,
            TimeSeriesTransformerPreTrainedModel,
        )
        from .models.timesformer import (
            TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TimesformerForVideoClassification,
            TimesformerModel,
            TimesformerPreTrainedModel,
        )
        from .models.timm_backbone import TimmBackbone
        from .models.trocr import (
            TROCR_PRETRAINED_MODEL_ARCHIVE_LIST,
            TrOCRForCausalLM,
            TrOCRPreTrainedModel,
        )
        from .models.tvlt import (
            TVLT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TvltForAudioVisualClassification,
            TvltForPreTraining,
            TvltModel,
            TvltPreTrainedModel,
        )
        from .models.tvp import (
            TVP_PRETRAINED_MODEL_ARCHIVE_LIST,
            TvpForVideoGrounding,
            TvpModel,
            TvpPreTrainedModel,
        )
        from .models.udop import (
            UDOP_PRETRAINED_MODEL_ARCHIVE_LIST,
            UdopEncoderModel,
            UdopForConditionalGeneration,
            UdopModel,
            UdopPreTrainedModel,
        )
        from .models.umt5 import (
            UMT5EncoderModel,
            UMT5ForConditionalGeneration,
            UMT5ForQuestionAnswering,
            UMT5ForSequenceClassification,
            UMT5ForTokenClassification,
            UMT5Model,
            UMT5PreTrainedModel,
        )
        from .models.unispeech import (
            UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
            UniSpeechForCTC,
            UniSpeechForPreTraining,
            UniSpeechForSequenceClassification,
            UniSpeechModel,
            UniSpeechPreTrainedModel,
        )
        from .models.unispeech_sat import (
            UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST,
            UniSpeechSatForAudioFrameClassification,
            UniSpeechSatForCTC,
            UniSpeechSatForPreTraining,
            UniSpeechSatForSequenceClassification,
            UniSpeechSatForXVector,
            UniSpeechSatModel,
            UniSpeechSatPreTrainedModel,
        )
        from .models.univnet import UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST, UnivNetModel
        from .models.upernet import (
            UperNetForSemanticSegmentation,
            UperNetPreTrainedModel,
        )
        from .models.videomae import (
            VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST,
            VideoMAEForPreTraining,
            VideoMAEForVideoClassification,
            VideoMAEModel,
            VideoMAEPreTrainedModel,
        )
        from .models.vilt import (
            VILT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViltForImageAndTextRetrieval,
            ViltForImagesAndTextClassification,
            ViltForMaskedLM,
            ViltForQuestionAnswering,
            ViltForTokenClassification,
            ViltLayer,
            ViltModel,
            ViltPreTrainedModel,
        )
        from .models.vipllava import (
            VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
            VipLlavaForConditionalGeneration,
            VipLlavaPreTrainedModel,
        )
        from .models.vision_encoder_decoder import VisionEncoderDecoderModel
        from .models.vision_text_dual_encoder import VisionTextDualEncoderModel
        from .models.visual_bert import (
            VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            VisualBertForMultipleChoice,
            VisualBertForPreTraining,
            VisualBertForQuestionAnswering,
            VisualBertForRegionToPhraseAlignment,
            VisualBertForVisualReasoning,
            VisualBertLayer,
            VisualBertModel,
            VisualBertPreTrainedModel,
        )
        from .models.vit import (
            VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTForImageClassification,
            ViTForMaskedImageModeling,
            ViTModel,
            ViTPreTrainedModel,
        )
        from .models.vit_hybrid import (
            VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTHybridForImageClassification,
            ViTHybridModel,
            ViTHybridPreTrainedModel,
        )
        from .models.vit_mae import (
            VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTMAEForPreTraining,
            ViTMAELayer,
            ViTMAEModel,
            ViTMAEPreTrainedModel,
        )
        from .models.vit_msn import (
            VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTMSNForImageClassification,
            ViTMSNModel,
            ViTMSNPreTrainedModel,
        )
        from .models.vitdet import (
            VITDET_PRETRAINED_MODEL_ARCHIVE_LIST,
            VitDetBackbone,
            VitDetModel,
            VitDetPreTrainedModel,
        )
        from .models.vitmatte import (
            VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST,
            VitMatteForImageMatting,
            VitMattePreTrainedModel,
        )
        from .models.vits import (
            VITS_PRETRAINED_MODEL_ARCHIVE_LIST,
            VitsModel,
            VitsPreTrainedModel,
        )
        from .models.vivit import (
            VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            VivitForVideoClassification,
            VivitModel,
            VivitPreTrainedModel,
        )
        from .models.wav2vec2 import (
            WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
            Wav2Vec2ForAudioFrameClassification,
            Wav2Vec2ForCTC,
            Wav2Vec2ForMaskedLM,
            Wav2Vec2ForPreTraining,
            Wav2Vec2ForSequenceClassification,
            Wav2Vec2ForXVector,
            Wav2Vec2Model,
            Wav2Vec2PreTrainedModel,
        )
        from .models.wav2vec2_bert import (
            WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            Wav2Vec2BertForAudioFrameClassification,
            Wav2Vec2BertForCTC,
            Wav2Vec2BertForSequenceClassification,
            Wav2Vec2BertForXVector,
            Wav2Vec2BertModel,
            Wav2Vec2BertPreTrainedModel,
        )
        from .models.wav2vec2_conformer import (
            WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            Wav2Vec2ConformerForAudioFrameClassification,
            Wav2Vec2ConformerForCTC,
            Wav2Vec2ConformerForPreTraining,
            Wav2Vec2ConformerForSequenceClassification,
            Wav2Vec2ConformerForXVector,
            Wav2Vec2ConformerModel,
            Wav2Vec2ConformerPreTrainedModel,
        )
        from .models.wavlm import (
            WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            WavLMForAudioFrameClassification,
            WavLMForCTC,
            WavLMForSequenceClassification,
            WavLMForXVector,
            WavLMModel,
            WavLMPreTrainedModel,
        )
        from .models.whisper import (
            WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
            WhisperForAudioClassification,
            WhisperForCausalLM,
            WhisperForConditionalGeneration,
            WhisperModel,
            WhisperPreTrainedModel,
        )
        from .models.x_clip import (
            XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            XCLIPModel,
            XCLIPPreTrainedModel,
            XCLIPTextModel,
            XCLIPVisionModel,
        )
        from .models.xglm import (
            XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            XGLMForCausalLM,
            XGLMModel,
            XGLMPreTrainedModel,
        )
        from .models.xlm import (
            XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMForMultipleChoice,
            XLMForQuestionAnswering,
            XLMForQuestionAnsweringSimple,
            XLMForSequenceClassification,
            XLMForTokenClassification,
            XLMModel,
            XLMPreTrainedModel,
            XLMWithLMHeadModel,
        )
        from .models.xlm_prophetnet import (
            XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMProphetNetDecoder,
            XLMProphetNetEncoder,
            XLMProphetNetForCausalLM,
            XLMProphetNetForConditionalGeneration,
            XLMProphetNetModel,
            XLMProphetNetPreTrainedModel,
        )
        from .models.xlm_roberta import (
            XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMRobertaForCausalLM,
            XLMRobertaForMaskedLM,
            XLMRobertaForMultipleChoice,
            XLMRobertaForQuestionAnswering,
            XLMRobertaForSequenceClassification,
            XLMRobertaForTokenClassification,
            XLMRobertaModel,
            XLMRobertaPreTrainedModel,
        )
        from .models.xlm_roberta_xl import (
            XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMRobertaXLForCausalLM,
            XLMRobertaXLForMaskedLM,
            XLMRobertaXLForMultipleChoice,
            XLMRobertaXLForQuestionAnswering,
            XLMRobertaXLForSequenceClassification,
            XLMRobertaXLForTokenClassification,
            XLMRobertaXLModel,
            XLMRobertaXLPreTrainedModel,
        )
        from .models.xlnet import (
            XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLNetForMultipleChoice,
            XLNetForQuestionAnswering,
            XLNetForQuestionAnsweringSimple,
            XLNetForSequenceClassification,
            XLNetForTokenClassification,
            XLNetLMHeadModel,
            XLNetModel,
            XLNetPreTrainedModel,
            load_tf_weights_in_xlnet,
        )
        from .models.xmod import (
            XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
            XmodForCausalLM,
            XmodForMaskedLM,
            XmodForMultipleChoice,
            XmodForQuestionAnswering,
            XmodForSequenceClassification,
            XmodForTokenClassification,
            XmodModel,
            XmodPreTrainedModel,
        )
        from .models.yolos import (
            YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
            YolosForObjectDetection,
            YolosModel,
            YolosPreTrainedModel,
        )
        from .models.yoso import (
            YOSO_PRETRAINED_MODEL_ARCHIVE_LIST,
            YosoForMaskedLM,
            YosoForMultipleChoice,
            YosoForQuestionAnswering,
            YosoForSequenceClassification,
            YosoForTokenClassification,
            YosoLayer,
            YosoModel,
            YosoPreTrainedModel,
        )

        # Optimization
        from .optimization import (
            Adafactor,
            AdamW,
            get_constant_schedule,
            get_constant_schedule_with_warmup,
            get_cosine_schedule_with_warmup,
            get_cosine_with_hard_restarts_schedule_with_warmup,
            get_inverse_sqrt_schedule,
            get_linear_schedule_with_warmup,
            get_polynomial_decay_schedule_with_warmup,
            get_scheduler,
        )
        from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer

        # Trainer
        from .trainer import Trainer
        from .trainer_pt_utils import torch_distributed_zero_first
        from .trainer_seq2seq import Seq2SeqTrainer

    # TensorFlow
    try:
        if not is_tf_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        # Import the same objects as dummies to get them in the namespace.
        # They will raise an import error if the user tries to instantiate / use them.
        from .utils.dummy_tf_objects import *
    else:
        from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments

        # Benchmarks
        from .benchmark.benchmark_tf import TensorFlowBenchmark
        from .generation import (
            TFForcedBOSTokenLogitsProcessor,
            TFForcedEOSTokenLogitsProcessor,
            TFForceTokensLogitsProcessor,
            TFGenerationMixin,
            TFLogitsProcessor,
            TFLogitsProcessorList,
            TFLogitsWarper,
            TFMinLengthLogitsProcessor,
            TFNoBadWordsLogitsProcessor,
            TFNoRepeatNGramLogitsProcessor,
            TFRepetitionPenaltyLogitsProcessor,
            TFSuppressTokensAtBeginLogitsProcessor,
            TFSuppressTokensLogitsProcessor,
            TFTemperatureLogitsWarper,
            TFTopKLogitsWarper,
            TFTopPLogitsWarper,
        )
        from .keras_callbacks import KerasMetricCallback, PushToHubCallback
        from .modeling_tf_utils import (
            TFPreTrainedModel,
            TFSequenceSummary,
            TFSharedEmbeddings,
            shape_list,
        )

        # TensorFlow model imports
        from .models.albert import (
            TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFAlbertForMaskedLM,
            TFAlbertForMultipleChoice,
            TFAlbertForPreTraining,
            TFAlbertForQuestionAnswering,
            TFAlbertForSequenceClassification,
            TFAlbertForTokenClassification,
            TFAlbertMainLayer,
            TFAlbertModel,
            TFAlbertPreTrainedModel,
        )
        from .models.auto import (
            TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
            TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_MASK_GENERATION_MAPPING,
            TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
            TF_MODEL_FOR_MASKED_LM_MAPPING,
            TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            TF_MODEL_FOR_PRETRAINING_MAPPING,
            TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
            TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
            TF_MODEL_FOR_TEXT_ENCODING_MAPPING,
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
            TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING,
            TF_MODEL_MAPPING,
            TF_MODEL_WITH_LM_HEAD_MAPPING,
            TFAutoModel,
            TFAutoModelForAudioClassification,
            TFAutoModelForCausalLM,
            TFAutoModelForDocumentQuestionAnswering,
            TFAutoModelForImageClassification,
            TFAutoModelForMaskedImageModeling,
            TFAutoModelForMaskedLM,
            TFAutoModelForMaskGeneration,
            TFAutoModelForMultipleChoice,
            TFAutoModelForNextSentencePrediction,
            TFAutoModelForPreTraining,
            TFAutoModelForQuestionAnswering,
            TFAutoModelForSemanticSegmentation,
            TFAutoModelForSeq2SeqLM,
            TFAutoModelForSequenceClassification,
            TFAutoModelForSpeechSeq2Seq,
            TFAutoModelForTableQuestionAnswering,
            TFAutoModelForTextEncoding,
            TFAutoModelForTokenClassification,
            TFAutoModelForVision2Seq,
            TFAutoModelForZeroShotImageClassification,
            TFAutoModelWithLMHead,
        )
        from .models.bart import (
            TFBartForConditionalGeneration,
            TFBartForSequenceClassification,
            TFBartModel,
            TFBartPretrainedModel,
        )
        from .models.bert import (
            TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFBertEmbeddings,
            TFBertForMaskedLM,
            TFBertForMultipleChoice,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertLMHeadModel,
            TFBertMainLayer,
            TFBertModel,
            TFBertPreTrainedModel,
        )
        from .models.blenderbot import (
            TFBlenderbotForConditionalGeneration,
            TFBlenderbotModel,
            TFBlenderbotPreTrainedModel,
        )
        from .models.blenderbot_small import (
            TFBlenderbotSmallForConditionalGeneration,
            TFBlenderbotSmallModel,
            TFBlenderbotSmallPreTrainedModel,
        )
        from .models.blip import (
            TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFBlipForConditionalGeneration,
            TFBlipForImageTextRetrieval,
            TFBlipForQuestionAnswering,
            TFBlipModel,
            TFBlipPreTrainedModel,
            TFBlipTextModel,
            TFBlipVisionModel,
        )
        from .models.camembert import (
            TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCamembertForCausalLM,
            TFCamembertForMaskedLM,
            TFCamembertForMultipleChoice,
            TFCamembertForQuestionAnswering,
            TFCamembertForSequenceClassification,
            TFCamembertForTokenClassification,
            TFCamembertModel,
            TFCamembertPreTrainedModel,
        )
        from .models.clip import (
            TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCLIPModel,
            TFCLIPPreTrainedModel,
            TFCLIPTextModel,
            TFCLIPVisionModel,
        )
        from .models.convbert import (
            TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFConvBertForMaskedLM,
            TFConvBertForMultipleChoice,
            TFConvBertForQuestionAnswering,
            TFConvBertForSequenceClassification,
            TFConvBertForTokenClassification,
            TFConvBertLayer,
            TFConvBertModel,
            TFConvBertPreTrainedModel,
        )
        from .models.convnext import (
            TFConvNextForImageClassification,
            TFConvNextModel,
            TFConvNextPreTrainedModel,
        )
        from .models.convnextv2 import (
            TFConvNextV2ForImageClassification,
            TFConvNextV2Model,
            TFConvNextV2PreTrainedModel,
        )
        from .models.ctrl import (
            TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCTRLForSequenceClassification,
            TFCTRLLMHeadModel,
            TFCTRLModel,
            TFCTRLPreTrainedModel,
        )
        from .models.cvt import (
            TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCvtForImageClassification,
            TFCvtModel,
            TFCvtPreTrainedModel,
        )
        from .models.data2vec import (
            TFData2VecVisionForImageClassification,
            TFData2VecVisionForSemanticSegmentation,
            TFData2VecVisionModel,
            TFData2VecVisionPreTrainedModel,
        )
        from .models.deberta import (
            TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDebertaForMaskedLM,
            TFDebertaForQuestionAnswering,
            TFDebertaForSequenceClassification,
            TFDebertaForTokenClassification,
            TFDebertaModel,
            TFDebertaPreTrainedModel,
        )
        from .models.deberta_v2 import (
            TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDebertaV2ForMaskedLM,
            TFDebertaV2ForMultipleChoice,
            TFDebertaV2ForQuestionAnswering,
            TFDebertaV2ForSequenceClassification,
            TFDebertaV2ForTokenClassification,
            TFDebertaV2Model,
            TFDebertaV2PreTrainedModel,
        )
        from .models.deit import (
            TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDeiTForImageClassification,
            TFDeiTForImageClassificationWithTeacher,
            TFDeiTForMaskedImageModeling,
            TFDeiTModel,
            TFDeiTPreTrainedModel,
        )
        from .models.deprecated.transfo_xl import (
            TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFAdaptiveEmbedding,
            TFTransfoXLForSequenceClassification,
            TFTransfoXLLMHeadModel,
            TFTransfoXLMainLayer,
            TFTransfoXLModel,
            TFTransfoXLPreTrainedModel,
        )
        from .models.distilbert import (
            TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDistilBertForMaskedLM,
            TFDistilBertForMultipleChoice,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
            TFDistilBertForTokenClassification,
            TFDistilBertMainLayer,
            TFDistilBertModel,
            TFDistilBertPreTrainedModel,
        )
        from .models.dpr import (
            TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDPRContextEncoder,
            TFDPRPretrainedContextEncoder,
            TFDPRPretrainedQuestionEncoder,
            TFDPRPretrainedReader,
            TFDPRQuestionEncoder,
            TFDPRReader,
        )
        from .models.efficientformer import (
            TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFEfficientFormerForImageClassification,
            TFEfficientFormerForImageClassificationWithTeacher,
            TFEfficientFormerModel,
            TFEfficientFormerPreTrainedModel,
        )
        from .models.electra import (
            TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFElectraForMaskedLM,
            TFElectraForMultipleChoice,
            TFElectraForPreTraining,
            TFElectraForQuestionAnswering,
            TFElectraForSequenceClassification,
            TFElectraForTokenClassification,
            TFElectraModel,
            TFElectraPreTrainedModel,
        )
        from .models.encoder_decoder import TFEncoderDecoderModel
        from .models.esm import (
            ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFEsmForMaskedLM,
            TFEsmForSequenceClassification,
            TFEsmForTokenClassification,
            TFEsmModel,
            TFEsmPreTrainedModel,
        )
        from .models.flaubert import (
            TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFFlaubertForMultipleChoice,
            TFFlaubertForQuestionAnsweringSimple,
            TFFlaubertForSequenceClassification,
            TFFlaubertForTokenClassification,
            TFFlaubertModel,
            TFFlaubertPreTrainedModel,
            TFFlaubertWithLMHeadModel,
        )
        from .models.funnel import (
            TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFFunnelBaseModel,
            TFFunnelForMaskedLM,
            TFFunnelForMultipleChoice,
            TFFunnelForPreTraining,
            TFFunnelForQuestionAnswering,
            TFFunnelForSequenceClassification,
            TFFunnelForTokenClassification,
            TFFunnelModel,
            TFFunnelPreTrainedModel,
        )
        from .models.gpt2 import (
            TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFGPT2DoubleHeadsModel,
            TFGPT2ForSequenceClassification,
            TFGPT2LMHeadModel,
            TFGPT2MainLayer,
            TFGPT2Model,
            TFGPT2PreTrainedModel,
        )
        from .models.gptj import (
            TFGPTJForCausalLM,
            TFGPTJForQuestionAnswering,
            TFGPTJForSequenceClassification,
            TFGPTJModel,
            TFGPTJPreTrainedModel,
        )
        from .models.groupvit import (
            TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFGroupViTModel,
            TFGroupViTPreTrainedModel,
            TFGroupViTTextModel,
            TFGroupViTVisionModel,
        )
        from .models.hubert import (
            TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFHubertForCTC,
            TFHubertModel,
            TFHubertPreTrainedModel,
        )
        from .models.layoutlm import (
            TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLayoutLMForMaskedLM,
            TFLayoutLMForQuestionAnswering,
            TFLayoutLMForSequenceClassification,
            TFLayoutLMForTokenClassification,
            TFLayoutLMMainLayer,
            TFLayoutLMModel,
            TFLayoutLMPreTrainedModel,
        )
        from .models.layoutlmv3 import (
            TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLayoutLMv3ForQuestionAnswering,
            TFLayoutLMv3ForSequenceClassification,
            TFLayoutLMv3ForTokenClassification,
            TFLayoutLMv3Model,
            TFLayoutLMv3PreTrainedModel,
        )
        from .models.led import (
            TFLEDForConditionalGeneration,
            TFLEDModel,
            TFLEDPreTrainedModel,
        )
        from .models.longformer import (
            TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLongformerForMaskedLM,
            TFLongformerForMultipleChoice,
            TFLongformerForQuestionAnswering,
            TFLongformerForSequenceClassification,
            TFLongformerForTokenClassification,
            TFLongformerModel,
            TFLongformerPreTrainedModel,
            TFLongformerSelfAttention,
        )
        from .models.lxmert import (
            TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLxmertForPreTraining,
            TFLxmertMainLayer,
            TFLxmertModel,
            TFLxmertPreTrainedModel,
            TFLxmertVisualFeatureEncoder,
        )
        from .models.marian import (
            TFMarianModel,
            TFMarianMTModel,
            TFMarianPreTrainedModel,
        )
        from .models.mbart import (
            TFMBartForConditionalGeneration,
            TFMBartModel,
            TFMBartPreTrainedModel,
        )
        from .models.mobilebert import (
            TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFMobileBertForMaskedLM,
            TFMobileBertForMultipleChoice,
            TFMobileBertForNextSentencePrediction,
            TFMobileBertForPreTraining,
            TFMobileBertForQuestionAnswering,
            TFMobileBertForSequenceClassification,
            TFMobileBertForTokenClassification,
            TFMobileBertMainLayer,
            TFMobileBertModel,
            TFMobileBertPreTrainedModel,
        )
        from .models.mobilevit import (
            TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFMobileViTForImageClassification,
            TFMobileViTForSemanticSegmentation,
            TFMobileViTModel,
            TFMobileViTPreTrainedModel,
        )
        from .models.mpnet import (
            TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFMPNetForMaskedLM,
            TFMPNetForMultipleChoice,
            TFMPNetForQuestionAnswering,
            TFMPNetForSequenceClassification,
            TFMPNetForTokenClassification,
            TFMPNetMainLayer,
            TFMPNetModel,
            TFMPNetPreTrainedModel,
        )
        from .models.mt5 import (
            TFMT5EncoderModel,
            TFMT5ForConditionalGeneration,
            TFMT5Model,
        )
        from .models.openai import (
            TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFOpenAIGPTDoubleHeadsModel,
            TFOpenAIGPTForSequenceClassification,
            TFOpenAIGPTLMHeadModel,
            TFOpenAIGPTMainLayer,
            TFOpenAIGPTModel,
            TFOpenAIGPTPreTrainedModel,
        )
        from .models.opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
        from .models.pegasus import (
            TFPegasusForConditionalGeneration,
            TFPegasusModel,
            TFPegasusPreTrainedModel,
        )
        from .models.rag import (
            TFRagModel,
            TFRagPreTrainedModel,
            TFRagSequenceForGeneration,
            TFRagTokenForGeneration,
        )
        from .models.regnet import (
            TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRegNetForImageClassification,
            TFRegNetModel,
            TFRegNetPreTrainedModel,
        )
        from .models.rembert import (
            TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRemBertForCausalLM,
            TFRemBertForMaskedLM,
            TFRemBertForMultipleChoice,
            TFRemBertForQuestionAnswering,
            TFRemBertForSequenceClassification,
            TFRemBertForTokenClassification,
            TFRemBertLayer,
            TFRemBertModel,
            TFRemBertPreTrainedModel,
        )
        from .models.resnet import (
            TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFResNetForImageClassification,
            TFResNetModel,
            TFResNetPreTrainedModel,
        )
        from .models.roberta import (
            TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRobertaForCausalLM,
            TFRobertaForMaskedLM,
            TFRobertaForMultipleChoice,
            TFRobertaForQuestionAnswering,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaMainLayer,
            TFRobertaModel,
            TFRobertaPreTrainedModel,
        )
        from .models.roberta_prelayernorm import (
            TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRobertaPreLayerNormForCausalLM,
            TFRobertaPreLayerNormForMaskedLM,
            TFRobertaPreLayerNormForMultipleChoice,
            TFRobertaPreLayerNormForQuestionAnswering,
            TFRobertaPreLayerNormForSequenceClassification,
            TFRobertaPreLayerNormForTokenClassification,
            TFRobertaPreLayerNormMainLayer,
            TFRobertaPreLayerNormModel,
            TFRobertaPreLayerNormPreTrainedModel,
        )
        from .models.roformer import (
            TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRoFormerForCausalLM,
            TFRoFormerForMaskedLM,
            TFRoFormerForMultipleChoice,
            TFRoFormerForQuestionAnswering,
            TFRoFormerForSequenceClassification,
            TFRoFormerForTokenClassification,
            TFRoFormerLayer,
            TFRoFormerModel,
            TFRoFormerPreTrainedModel,
        )
        from .models.sam import (
            TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFSamModel,
            TFSamPreTrainedModel,
        )
        from .models.segformer import (
            TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFSegformerDecodeHead,
            TFSegformerForImageClassification,
            TFSegformerForSemanticSegmentation,
            TFSegformerModel,
            TFSegformerPreTrainedModel,
        )
        from .models.speech_to_text import (
            TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFSpeech2TextForConditionalGeneration,
            TFSpeech2TextModel,
            TFSpeech2TextPreTrainedModel,
        )
        from .models.swin import (
            TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFSwinForImageClassification,
            TFSwinForMaskedImageModeling,
            TFSwinModel,
            TFSwinPreTrainedModel,
        )
        from .models.t5 import (
            TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFT5EncoderModel,
            TFT5ForConditionalGeneration,
            TFT5Model,
            TFT5PreTrainedModel,
        )
        from .models.tapas import (
            TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFTapasForMaskedLM,
            TFTapasForQuestionAnswering,
            TFTapasForSequenceClassification,
            TFTapasModel,
            TFTapasPreTrainedModel,
        )
        from .models.vision_encoder_decoder import TFVisionEncoderDecoderModel
        from .models.vision_text_dual_encoder import TFVisionTextDualEncoderModel
        from .models.vit import (
            TFViTForImageClassification,
            TFViTModel,
            TFViTPreTrainedModel,
        )
        from .models.vit_mae import (
            TFViTMAEForPreTraining,
            TFViTMAEModel,
            TFViTMAEPreTrainedModel,
        )
        from .models.wav2vec2 import (
            TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFWav2Vec2ForCTC,
            TFWav2Vec2ForSequenceClassification,
            TFWav2Vec2Model,
            TFWav2Vec2PreTrainedModel,
        )
        from .models.whisper import (
            TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFWhisperForConditionalGeneration,
            TFWhisperModel,
            TFWhisperPreTrainedModel,
        )
        from .models.xglm import (
            TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXGLMForCausalLM,
            TFXGLMModel,
            TFXGLMPreTrainedModel,
        )
        from .models.xlm import (
            TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLMForMultipleChoice,
            TFXLMForQuestionAnsweringSimple,
            TFXLMForSequenceClassification,
            TFXLMForTokenClassification,
            TFXLMMainLayer,
            TFXLMModel,
            TFXLMPreTrainedModel,
            TFXLMWithLMHeadModel,
        )
        from .models.xlm_roberta import (
            TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLMRobertaForCausalLM,
            TFXLMRobertaForMaskedLM,
            TFXLMRobertaForMultipleChoice,
            TFXLMRobertaForQuestionAnswering,
            TFXLMRobertaForSequenceClassification,
            TFXLMRobertaForTokenClassification,
            TFXLMRobertaModel,
            TFXLMRobertaPreTrainedModel,
        )
        from .models.xlnet import (
            TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLNetForMultipleChoice,
            TFXLNetForQuestionAnsweringSimple,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetLMHeadModel,
            TFXLNetMainLayer,
            TFXLNetModel,
            TFXLNetPreTrainedModel,
        )

        # Optimization
        from .optimization_tf import (
            AdamWeightDecay,
            GradientAccumulator,
            WarmUp,
            create_optimizer,
        )

    try:
        if not (
            is_librosa_available()
            and is_essentia_available()
            and is_scipy_available()
            and is_torch_available()
            and is_pretty_midi_available()
        ):
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects import *
    else:
        from .models.pop2piano import (
            Pop2PianoFeatureExtractor,
            Pop2PianoProcessor,
            Pop2PianoTokenizer,
        )

    try:
        if not is_torchaudio_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        from .utils.dummy_torchaudio_objects import *
    else:
        from .models.musicgen_melody import MusicgenMelodyFeatureExtractor, MusicgenMelodyProcessor
    try:
        if not is_flax_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        # Import the same objects as dummies to get them in the namespace.
        # They will raise an import error if the user tries to instantiate / use them.
        from .utils.dummy_flax_objects import *
    else:
        from .generation import (
            FlaxForcedBOSTokenLogitsProcessor,
            FlaxForcedEOSTokenLogitsProcessor,
            FlaxForceTokensLogitsProcessor,
            FlaxGenerationMixin,
            FlaxLogitsProcessor,
            FlaxLogitsProcessorList,
            FlaxLogitsWarper,
            FlaxMinLengthLogitsProcessor,
            FlaxSuppressTokensAtBeginLogitsProcessor,
            FlaxSuppressTokensLogitsProcessor,
            FlaxTemperatureLogitsWarper,
            FlaxTopKLogitsWarper,
            FlaxTopPLogitsWarper,
            FlaxWhisperTimeStampLogitsProcessor,
        )
        from .modeling_flax_utils import FlaxPreTrainedModel

        # Flax model imports
        from .models.albert import (
            FlaxAlbertForMaskedLM,
            FlaxAlbertForMultipleChoice,
            FlaxAlbertForPreTraining,
            FlaxAlbertForQuestionAnswering,
            FlaxAlbertForSequenceClassification,
            FlaxAlbertForTokenClassification,
            FlaxAlbertModel,
            FlaxAlbertPreTrainedModel,
        )
        from .models.auto import (
            FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
            FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
            FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
            FLAX_MODEL_FOR_MASKED_LM_MAPPING,
            FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            FLAX_MODEL_FOR_PRETRAINING_MAPPING,
            FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
            FLAX_MODEL_MAPPING,
            FlaxAutoModel,
            FlaxAutoModelForCausalLM,
            FlaxAutoModelForImageClassification,
            FlaxAutoModelForMaskedLM,
            FlaxAutoModelForMultipleChoice,
            FlaxAutoModelForNextSentencePrediction,
            FlaxAutoModelForPreTraining,
            FlaxAutoModelForQuestionAnswering,
            FlaxAutoModelForSeq2SeqLM,
            FlaxAutoModelForSequenceClassification,
            FlaxAutoModelForSpeechSeq2Seq,
            FlaxAutoModelForTokenClassification,
            FlaxAutoModelForVision2Seq,
        )
        from .models.bart import (
            FlaxBartDecoderPreTrainedModel,
            FlaxBartForCausalLM,
            FlaxBartForConditionalGeneration,
            FlaxBartForQuestionAnswering,
            FlaxBartForSequenceClassification,
            FlaxBartModel,
            FlaxBartPreTrainedModel,
        )
        from .models.beit import (
            FlaxBeitForImageClassification,
            FlaxBeitForMaskedImageModeling,
            FlaxBeitModel,
            FlaxBeitPreTrainedModel,
        )
        from .models.bert import (
            FlaxBertForCausalLM,
            FlaxBertForMaskedLM,
            FlaxBertForMultipleChoice,
            FlaxBertForNextSentencePrediction,
            FlaxBertForPreTraining,
            FlaxBertForQuestionAnswering,
            FlaxBertForSequenceClassification,
            FlaxBertForTokenClassification,
            FlaxBertModel,
            FlaxBertPreTrainedModel,
        )
        from .models.big_bird import (
            FlaxBigBirdForCausalLM,
            FlaxBigBirdForMaskedLM,
            FlaxBigBirdForMultipleChoice,
            FlaxBigBirdForPreTraining,
            FlaxBigBirdForQuestionAnswering,
            FlaxBigBirdForSequenceClassification,
            FlaxBigBirdForTokenClassification,
            FlaxBigBirdModel,
            FlaxBigBirdPreTrainedModel,
        )
        from .models.blenderbot import (
            FlaxBlenderbotForConditionalGeneration,
            FlaxBlenderbotModel,
            FlaxBlenderbotPreTrainedModel,
        )
        from .models.blenderbot_small import (
            FlaxBlenderbotSmallForConditionalGeneration,
            FlaxBlenderbotSmallModel,
            FlaxBlenderbotSmallPreTrainedModel,
        )
        from .models.bloom import (
            FlaxBloomForCausalLM,
            FlaxBloomModel,
            FlaxBloomPreTrainedModel,
        )
        from .models.clip import (
            FlaxCLIPModel,
            FlaxCLIPPreTrainedModel,
            FlaxCLIPTextModel,
            FlaxCLIPTextModelWithProjection,
            FlaxCLIPTextPreTrainedModel,
            FlaxCLIPVisionModel,
            FlaxCLIPVisionPreTrainedModel,
        )
        from .models.distilbert import (
            FlaxDistilBertForMaskedLM,
            FlaxDistilBertForMultipleChoice,
            FlaxDistilBertForQuestionAnswering,
            FlaxDistilBertForSequenceClassification,
            FlaxDistilBertForTokenClassification,
            FlaxDistilBertModel,
            FlaxDistilBertPreTrainedModel,
        )
        from .models.electra import (
            FlaxElectraForCausalLM,
            FlaxElectraForMaskedLM,
            FlaxElectraForMultipleChoice,
            FlaxElectraForPreTraining,
            FlaxElectraForQuestionAnswering,
            FlaxElectraForSequenceClassification,
            FlaxElectraForTokenClassification,
            FlaxElectraModel,
            FlaxElectraPreTrainedModel,
        )
        from .models.encoder_decoder import FlaxEncoderDecoderModel
        from .models.gemma import (
            FlaxGemmaForCausalLM,
            FlaxGemmaModel,
            FlaxGemmaPreTrainedModel,
        )
        from .models.gpt2 import (
            FlaxGPT2LMHeadModel,
            FlaxGPT2Model,
            FlaxGPT2PreTrainedModel,
        )
        from .models.gpt_neo import (
            FlaxGPTNeoForCausalLM,
            FlaxGPTNeoModel,
            FlaxGPTNeoPreTrainedModel,
        )
        from .models.gptj import (
            FlaxGPTJForCausalLM,
            FlaxGPTJModel,
            FlaxGPTJPreTrainedModel,
        )
        from .models.llama import (
            FlaxLlamaForCausalLM,
            FlaxLlamaModel,
            FlaxLlamaPreTrainedModel,
        )
        from .models.longt5 import (
            FlaxLongT5ForConditionalGeneration,
            FlaxLongT5Model,
            FlaxLongT5PreTrainedModel,
        )
        from .models.marian import (
            FlaxMarianModel,
            FlaxMarianMTModel,
            FlaxMarianPreTrainedModel,
        )
        from .models.mbart import (
            FlaxMBartForConditionalGeneration,
            FlaxMBartForQuestionAnswering,
            FlaxMBartForSequenceClassification,
            FlaxMBartModel,
            FlaxMBartPreTrainedModel,
        )
        from .models.mistral import (
            FlaxMistralForCausalLM,
            FlaxMistralModel,
            FlaxMistralPreTrainedModel,
        )
        from .models.mt5 import (
            FlaxMT5EncoderModel,
            FlaxMT5ForConditionalGeneration,
            FlaxMT5Model,
        )
        from .models.opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
        from .models.pegasus import (
            FlaxPegasusForConditionalGeneration,
            FlaxPegasusModel,
            FlaxPegasusPreTrainedModel,
        )
        from .models.regnet import (
            FlaxRegNetForImageClassification,
            FlaxRegNetModel,
            FlaxRegNetPreTrainedModel,
        )
        from .models.resnet import (
            FlaxResNetForImageClassification,
            FlaxResNetModel,
            FlaxResNetPreTrainedModel,
        )
        from .models.roberta import (
            FlaxRobertaForCausalLM,
            FlaxRobertaForMaskedLM,
            FlaxRobertaForMultipleChoice,
            FlaxRobertaForQuestionAnswering,
            FlaxRobertaForSequenceClassification,
            FlaxRobertaForTokenClassification,
            FlaxRobertaModel,
            FlaxRobertaPreTrainedModel,
        )
        from .models.roberta_prelayernorm import (
            FlaxRobertaPreLayerNormForCausalLM,
            FlaxRobertaPreLayerNormForMaskedLM,
            FlaxRobertaPreLayerNormForMultipleChoice,
            FlaxRobertaPreLayerNormForQuestionAnswering,
            FlaxRobertaPreLayerNormForSequenceClassification,
            FlaxRobertaPreLayerNormForTokenClassification,
            FlaxRobertaPreLayerNormModel,
            FlaxRobertaPreLayerNormPreTrainedModel,
        )
        from .models.roformer import (
            FlaxRoFormerForMaskedLM,
            FlaxRoFormerForMultipleChoice,
            FlaxRoFormerForQuestionAnswering,
            FlaxRoFormerForSequenceClassification,
            FlaxRoFormerForTokenClassification,
            FlaxRoFormerModel,
            FlaxRoFormerPreTrainedModel,
        )
        from .models.speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
        from .models.t5 import (
            FlaxT5EncoderModel,
            FlaxT5ForConditionalGeneration,
            FlaxT5Model,
            FlaxT5PreTrainedModel,
        )
        from .models.vision_encoder_decoder import FlaxVisionEncoderDecoderModel
        from .models.vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
        from .models.vit import (
            FlaxViTForImageClassification,
            FlaxViTModel,
            FlaxViTPreTrainedModel,
        )
        from .models.wav2vec2 import (
            FlaxWav2Vec2ForCTC,
            FlaxWav2Vec2ForPreTraining,
            FlaxWav2Vec2Model,
            FlaxWav2Vec2PreTrainedModel,
        )
        from .models.whisper import (
            FlaxWhisperForAudioClassification,
            FlaxWhisperForConditionalGeneration,
            FlaxWhisperModel,
            FlaxWhisperPreTrainedModel,
        )
        from .models.xglm import (
            FlaxXGLMForCausalLM,
            FlaxXGLMModel,
            FlaxXGLMPreTrainedModel,
        )
        from .models.xlm_roberta import (
            FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            FlaxXLMRobertaForCausalLM,
            FlaxXLMRobertaForMaskedLM,
            FlaxXLMRobertaForMultipleChoice,
            FlaxXLMRobertaForQuestionAnswering,
            FlaxXLMRobertaForSequenceClassification,
            FlaxXLMRobertaForTokenClassification,
            FlaxXLMRobertaModel,
            FlaxXLMRobertaPreTrainedModel,
        )


else:
    import sys

    sys.modules[__name__] = _LazyModule(
        __name__,
        globals()["__file__"],
        _import_structure,
        module_spec=__spec__,
        extra_objects={"__version__": __version__},
    )


if not is_tf_available() and not is_torch_available() and not is_flax_available():
    logger.warning_advice(
        "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. "
        "Models won't be available and only tokenizers, configuration "
        "and file/data utilities can be used."
    )
Back to Directory File Manager