# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig"],
"tokenization_led": ["LEDTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_led_fast"] = ["LEDTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_led"] = [
"LED_PRETRAINED_MODEL_ARCHIVE_LIST",
"LEDForConditionalGeneration",
"LEDForQuestionAnswering",
"LEDForSequenceClassification",
"LEDModel",
"LEDPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_led"] = ["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"]
if TYPE_CHECKING:
from .configuration_led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig
from .tokenization_led import LEDTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_led_fast import LEDTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_led import (
LED_PRETRAINED_MODEL_ARCHIVE_LIST,
LEDForConditionalGeneration,
LEDForQuestionAnswering,
LEDForSequenceClassification,
LEDModel,
LEDPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)