Viewing File: /home/ubuntu/combine_ai/combine/lib/python3.10/site-packages/transformers/processing_utils.py

# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 Processing saving/loading class for common processors.
"""

import copy
import inspect
import json
import os
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union

from .dynamic_module_utils import custom_object_save
from .tokenization_utils_base import PreTrainedTokenizerBase
from .utils import (
    PROCESSOR_NAME,
    PushToHubMixin,
    add_model_info_to_auto_map,
    cached_file,
    copy_func,
    direct_transformers_import,
    download_url,
    is_offline_mode,
    is_remote_url,
    logging,
)


logger = logging.get_logger(__name__)

# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(Path(__file__).parent)


AUTO_TO_BASE_CLASS_MAPPING = {
    "AutoTokenizer": "PreTrainedTokenizerBase",
    "AutoFeatureExtractor": "FeatureExtractionMixin",
    "AutoImageProcessor": "ImageProcessingMixin",
}


class ProcessorMixin(PushToHubMixin):
    """
    This is a mixin used to provide saving/loading functionality for all processor classes.
    """

    attributes = ["feature_extractor", "tokenizer"]
    # Names need to be attr_class for attr in attributes
    feature_extractor_class = None
    tokenizer_class = None
    _auto_class = None

    # args have to match the attributes class attribute
    def __init__(self, *args, **kwargs):
        # Sanitize args and kwargs
        for key in kwargs:
            if key not in self.attributes:
                raise TypeError(f"Unexpected keyword argument {key}.")
        for arg, attribute_name in zip(args, self.attributes):
            if attribute_name in kwargs:
                raise TypeError(f"Got multiple values for argument {attribute_name}.")
            else:
                kwargs[attribute_name] = arg

        if len(kwargs) != len(self.attributes):
            raise ValueError(
                f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got "
                f"{len(args)} arguments instead."
            )

        # Check each arg is of the proper class (this will also catch a user initializing in the wrong order)
        for attribute_name, arg in kwargs.items():
            class_name = getattr(self, f"{attribute_name}_class")
            # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class.
            class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name)
            if isinstance(class_name, tuple):
                proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None)
            else:
                proper_class = getattr(transformers_module, class_name)

            if not isinstance(arg, proper_class):
                raise ValueError(
                    f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
                )

            setattr(self, attribute_name, arg)

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance.
        """
        output = copy.deepcopy(self.__dict__)

        # Get the kwargs in `__init__`.
        sig = inspect.signature(self.__init__)
        # Only save the attributes that are presented in the kwargs of `__init__`.
        attrs_to_save = sig.parameters
        # Don't save attributes like `tokenizer`, `image processor` etc.
        attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes]
        # extra attributes to be kept
        attrs_to_save += ["auto_map"]

        output = {k: v for k, v in output.items() if k in attrs_to_save}

        output["processor_class"] = self.__class__.__name__

        if "tokenizer" in output:
            del output["tokenizer"]
        if "image_processor" in output:
            del output["image_processor"]
        if "feature_extractor" in output:
            del output["feature_extractor"]

        # Some attributes have different names but containing objects that are not simple strings
        output = {
            k: v
            for k, v in output.items()
            if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC")
        }

        return output

    def to_json_string(self) -> str:
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
        """
        dictionary = self.to_dict()

        return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this processor instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string())

    def __repr__(self):
        attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes]
        attributes_repr = "\n".join(attributes_repr)
        return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}"

    def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
        """
        Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
        can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.

        <Tip>

        This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
        [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
        methods above for more information.

        </Tip>

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
                be created if it does not exist).
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
            )
            if kwargs.get("token", None) is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            kwargs["token"] = use_auth_token

        os.makedirs(save_directory, exist_ok=True)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = self._create_repo(repo_id, **kwargs)
            files_timestamps = self._get_files_timestamps(save_directory)
        # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            attrs = [getattr(self, attribute_name) for attribute_name in self.attributes]
            configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs]
            configs.append(self)
            custom_object_save(self, save_directory, config=configs)

        for attribute_name in self.attributes:
            attribute = getattr(self, attribute_name)
            # Include the processor class in the attribute config so this processor can then be reloaded with the
            # `AutoProcessor` API.
            if hasattr(attribute, "_set_processor_class"):
                attribute._set_processor_class(self.__class__.__name__)
            attribute.save_pretrained(save_directory)

        if self._auto_class is not None:
            # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
            for attribute_name in self.attributes:
                attribute = getattr(self, attribute_name)
                if isinstance(attribute, PreTrainedTokenizerBase):
                    del attribute.init_kwargs["auto_map"]

        # If we save using the predefined names, we can load using `from_pretrained`
        output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)

        # For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
        # `auto_map` is not specified.
        if set(self.to_dict().keys()) != {"processor_class"}:
            self.to_json_file(output_processor_file)
            logger.info(f"processor saved in {output_processor_file}")

        if push_to_hub:
            self._upload_modified_files(
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
                token=kwargs.get("token"),
            )

        if set(self.to_dict().keys()) == {"processor_class"}:
            return []
        return [output_processor_file]

    @classmethod
    def get_processor_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """
        From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
        processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.

        Returns:
            `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object.
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", "")

        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        is_local = os.path.isdir(pretrained_model_name_or_path)
        if os.path.isdir(pretrained_model_name_or_path):
            processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME)
        if os.path.isfile(pretrained_model_name_or_path):
            resolved_processor_file = pretrained_model_name_or_path
            is_local = True
        elif is_remote_url(pretrained_model_name_or_path):
            processor_file = pretrained_model_name_or_path
            resolved_processor_file = download_url(pretrained_model_name_or_path)
        else:
            processor_file = PROCESSOR_NAME
            try:
                # Load from local folder or from cache or download from model Hub and cache
                resolved_processor_file = cached_file(
                    pretrained_model_name_or_path,
                    processor_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                )
            except EnvironmentError:
                # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
                # the original exception.
                raise
            except Exception:
                # For any other exception, we throw a generic error.
                raise EnvironmentError(
                    f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
                    " it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                    f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                    f" directory containing a {PROCESSOR_NAME} file"
                )

        # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
        # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
        # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
        # However, for models added in the future, we won't get the expected error if this file is missing.
        if resolved_processor_file is None:
            return {}, kwargs

        try:
            # Load processor dict
            with open(resolved_processor_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            processor_dict = json.loads(text)

        except json.JSONDecodeError:
            raise EnvironmentError(
                f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
            )

        if is_local:
            logger.info(f"loading configuration file {resolved_processor_file}")
        else:
            logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}")

        if "auto_map" in processor_dict and not is_local:
            processor_dict["auto_map"] = add_model_info_to_auto_map(
                processor_dict["auto_map"], pretrained_model_name_or_path
            )

        return processor_dict, kwargs

    @classmethod
    def from_args_and_dict(cls, args, processor_dict: Dict[str, Any], **kwargs):
        """
        Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters.

        Args:
            processor_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the processor object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the
                [`~processing_utils.ProcessingMixin.to_dict`] method.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the processor object.

        Returns:
            [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those
            parameters.
        """
        processor_dict = processor_dict.copy()
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)

        # Unlike image processors or feature extractors whose `__init__` accept `kwargs`, processor don't have `kwargs`.
        # We have to pop up some unused (but specific) arguments to make it work.
        if "processor_class" in processor_dict:
            del processor_dict["processor_class"]

        if "auto_map" in processor_dict:
            del processor_dict["auto_map"]

        processor = cls(*args, **processor_dict)

        # Update processor with kwargs if needed
        for key in set(kwargs.keys()):
            if hasattr(processor, key):
                setattr(processor, key, kwargs.pop(key))

        logger.info(f"Processor {processor}")
        if return_unused_kwargs:
            return processor, kwargs
        else:
            return processor

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        **kwargs,
    ):
        r"""
        Instantiate a processor associated with a pretrained model.

        <Tip>

        This class method is simply calling the feature extractor
        [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor
        [`~image_processing_utils.ImageProcessingMixin`] and the tokenizer
        [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the
        methods above for more information.

        </Tip>

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co.
                - a path to a *directory* containing a feature extractor file saved using the
                  [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
                - a path or url to a saved feature extractor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            **kwargs
                Additional keyword arguments passed along to both
                [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and
                [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
        """
        kwargs["cache_dir"] = cache_dir
        kwargs["force_download"] = force_download
        kwargs["local_files_only"] = local_files_only
        kwargs["revision"] = revision

        use_auth_token = kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

        args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
        processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)

        return cls.from_args_and_dict(args, processor_dict, **kwargs)

    @classmethod
    def register_for_auto_class(cls, auto_class="AutoProcessor"):
        """
        Register this class with a given auto class. This should only be used for custom feature extractors as the ones
        in the library are already mapped with `AutoProcessor`.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
                The auto class to register this new feature extractor with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

    @classmethod
    def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = []
        for attribute_name in cls.attributes:
            class_name = getattr(cls, f"{attribute_name}_class")
            if isinstance(class_name, tuple):
                classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
                use_fast = kwargs.get("use_fast", True)
                if use_fast and classes[1] is not None:
                    attribute_class = classes[1]
                else:
                    attribute_class = classes[0]
            else:
                attribute_class = getattr(transformers_module, class_name)

            args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
        return args

    @property
    def model_input_names(self):
        first_attribute = getattr(self, self.attributes[0])
        return getattr(first_attribute, "model_input_names", None)


ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub)
if ProcessorMixin.push_to_hub.__doc__ is not None:
    ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format(
        object="processor", object_class="AutoProcessor", object_files="processor files"
    )
Back to Directory File Manager