import ast
import inspect
import re
import sys
import warnings
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
from .. import language
from .._C.libtriton.triton import ir
from ..language import constexpr, tensor
# ideally we wouldn't need any runtime component
from ..runtime import JITFunction
from .errors import (CompilationError, CompileTimeAssertionFailure, UnsupportedLanguageConstruct)
def mangle_ty(ty):
if ty.is_ptr():
return 'P' + mangle_ty(ty.element_ty)
if ty.is_int():
SIGNED = language.dtype.SIGNEDNESS.SIGNED
prefix = 'i' if ty.int_signedness == SIGNED else 'u'
return prefix + str(ty.int_bitwidth)
if ty.is_floating():
return str(ty)
if ty.is_block():
elt = mangle_ty(ty.scalar)
shape = '_'.join(map(str, ty.shape))
return f'{elt}S{shape}S'
if ty.is_void():
return 'V'
assert False, "Unsupported type"
def mangle_fn(name, arg_tys, constants):
# doesn't mangle ret type, which must be a function of arg tys
mangled_arg_names = '_'.join([mangle_ty(ty) for ty in arg_tys])
mangled_constants = '_'.join([f'{i}c{repr(constants[i])}' for i in sorted(constants)])
mangled_constants = mangled_constants.replace('.', '_d_')
mangled_constants = mangled_constants.replace("'", '_sq_')
# [ and ] are not allowed in LLVM identifiers
mangled_constants = mangled_constants.replace('[', '_').replace(']', '_')
ret = f'{name}__{mangled_arg_names}__{mangled_constants}'
return ret
def _is_triton_tensor(o: Any) -> bool:
return isinstance(o, tensor)
def _is_constexpr(o: Any) -> bool:
return isinstance(o, constexpr)
def _is_triton_scalar(o: Any) -> bool:
return _is_triton_tensor(o) and (not o.type.is_block() or o.type.numel == 1)
def _is_list_like(o: Any) -> bool:
return isinstance(o, (list, tuple))
def _unwrap_if_constexpr(o: Any):
return o.value if isinstance(o, constexpr) else o
def _check_fn_args(node, fn, args):
if fn.noinline:
for idx, arg in enumerate(args):
if not _is_constexpr(arg) and not _is_triton_scalar(arg):
raise UnsupportedLanguageConstruct(
fn.src, node,
f'Function {fn.__name__} is marked noinline, but was called with non-scalar argument {fn.arg_names[idx]}:{arg}'
)
def _get_fn_file_line(fn):
base_fn = fn
while not isinstance(base_fn, JITFunction):
base_fn = base_fn.fn
file_name = base_fn.fn.__code__.co_filename
lines, begin_line = inspect.getsourcelines(base_fn.fn)
# Match the following pattern:
# @triton.autotune(...) <- foo.__code__.co_firstlineno
# @triton.heuristics(...)
# @triton.jit
# def foo(...): <- this line is the first line
for idx, line in enumerate(lines):
if line.strip().startswith("def "):
begin_line += idx
break
return file_name, begin_line
_condition_types = {bool, int, type(None)} # Python types accepted for conditionals inside kernels
class enter_sub_region:
def __init__(self, generator):
self.generator = generator
def __enter__(self):
# record lscope & local_defs in the parent scope
self.liveins = self.generator.lscope.copy()
self.prev_defs = self.generator.local_defs.copy()
self.generator.local_defs = {}
self.insert_block = self.generator.builder.get_insertion_block()
self.insert_point = self.generator.builder.get_insertion_point()
return self.liveins, self.insert_block
def __exit__(self, *args, **kwargs):
self.generator.builder.restore_insertion_point(self.insert_point)
self.generator.lscope = self.liveins
self.generator.local_defs = self.prev_defs
# Check if the given syntax node has an "early" return
class ContainsReturnChecker(ast.NodeVisitor):
def __init__(self, gscope):
self.gscope = gscope
def _visit_stmts(self, body) -> bool:
for s in body:
if self.visit(s):
return True
return False
def _visit_function(self, fn) -> bool:
# Currently we only support JITFunctions defined in the global scope
if isinstance(fn, JITFunction) and not fn.noinline:
fn_node = fn.parse()
return ContainsReturnChecker(self.gscope).visit(fn_node)
return False
def generic_visit(self, node) -> bool:
ret = False
for _, value in ast.iter_fields(node):
if isinstance(value, list):
for item in value:
if isinstance(item, ast.AST):
ret = ret or self.visit(item)
elif isinstance(value, ast.AST):
ret = ret or self.visit(value)
return ret
def visit_Attribute(self, node: ast.Attribute) -> bool:
# If the left part is a name, it's possible that
# we call triton native function or a jit function from another module.
# If the left part is not a name, it must return a tensor or a constexpr
# whose methods do not contain return statements
# e.g., (tl.load(x)).to(y)
# So we only check if the expressions within value have return or not
if isinstance(node.value, ast.Name):
if node.value.id in self.gscope:
value = self.gscope[node.value.id]
fn = getattr(value, node.attr)
return self._visit_function(fn)
return False
return self.visit(node.value)
def visit_Name(self, node: ast.Name) -> bool:
if type(node.ctx) == ast.Store:
return False
if node.id in self.gscope:
fn = self.gscope[node.id]
return self._visit_function(fn)
return False
def visit_Return(self, node: ast.Return) -> bool:
return True
def visit_Assign(self, node: ast.Assign) -> bool:
# There couldn't be an early return
# x = ...
return False
def visit_AugAssign(self, node: ast.AugAssign) -> bool:
# There couldn't be an early return
# x += ...
return False
def visit_Module(self, node: ast.Module) -> bool:
return self._visit_stmts(node.body)
def visit_FunctionDef(self, node: ast.FunctionDef) -> bool:
return self._visit_stmts(node.body)
def visit_If(self, node: ast.If) -> bool:
# TODO: optimize the following case in which we actually don't have
# a return when static_cond is false:
# if dynamic_cond
# if static_cond
# func_with_return
# else
# func_without_return
ret = self._visit_stmts(node.body)
if node.orelse:
ret = ret or self._visit_stmts(node.orelse)
return ret
def visit_IfExp(self, node: ast.IfExp) -> bool:
return self.visit(node.body) or self.visit(node.orelse)
def visit_Call(self, node: ast.Call) -> bool:
return self.visit(node.func)
class CodeGenerator(ast.NodeVisitor):
def __init__(self, context, prototype, gscope, attributes, constants, function_name, target, module=None,
is_kernel=False, function_types: Optional[Dict] = None, debug=False, noinline=False,
file_name: Optional[str] = None, begin_line=0):
self.context = context
self.builder = ir.builder(context)
self.file_name = file_name
# node.lineno starts from 1, so we need to subtract 1
self.begin_line = begin_line - 1
self.builder.set_loc(file_name, begin_line, 0)
self.builder.target = target
self.module = self.builder.create_module() if module is None else module
self.function_ret_types = {} if function_types is None else function_types
self.prototype = prototype
self.gscope = gscope
self.lscope = dict()
self.attributes = attributes
self.constants = constants
self.function_name = function_name
self.is_kernel = is_kernel
self.last_node = None
self.debug = debug
self.noinline = noinline
self.scf_stack = []
self.last_ret_type = None
# SSA-construction
# name => language.tensor
self.local_defs: Dict[str, tensor] = {}
self.global_uses: Dict[str, tensor] = {}
self.dereference_name: Callable[[str], Any] = self._define_name_lookup()
self.fn = None
builtin_namespace: Dict[str, Any] = {_.__name__: _ for _ in (range, float, int, isinstance, getattr)}
builtin_namespace.update((
('print', language.core.device_print),
('min', language.minimum),
))
def _define_name_lookup(self):
def local_lookup(name: str, absent):
# this needs to be re-fetched from `self` every time, because it gets switched occasionally
value = self.lscope.get(name, absent)
if value is not absent and name not in self.local_defs:
self.global_uses[name] = value
return value
absent_marker = object()
def name_lookup(name: str) -> Any:
absent = absent_marker
for lookup_function in local_lookup, self.gscope.get, self.builtin_namespace.get:
value = lookup_function(name, absent)
if value is not absent:
return value
raise NameError(f'{name} is not defined')
return name_lookup
def set_value(self, name: str, value: Union[tensor, constexpr]) -> None:
''' This function:
called by visit_Assign() & visit_FunctionDef() to store left value (lvalue)
1. record local defined name (FIXME: should consider control flow)
2. store tensor in self.lvalue
'''
self.lscope[name] = value
self.local_defs[name] = value
def _get_insertion_point_and_loc(self):
# XXX: this is a hack to get the location of the insertion point.
# The insertion point's location could be invalid sometimes,
# so we need to explicitly set the location
loc = self.builder.get_loc()
ip = self.builder.get_insertion_point()
return ip, loc
def _set_insertion_point_and_loc(self, ip, loc):
self.builder.restore_insertion_point(ip)
self.builder.set_loc(loc)
#
# AST visitor
#
def visit_compound_statement(self, stmts):
# Ensure that stmts is iterable
if not _is_list_like(stmts):
stmts = [stmts]
for stmt in stmts:
ret_type = self.visit(stmt)
if ret_type is not None and isinstance(stmt, ast.Return):
self.last_ret_type = ret_type
def visit_Module(self, node):
ast.NodeVisitor.generic_visit(self, node)
def visit_List(self, node):
ctx = self.visit(node.ctx)
assert ctx is None
elts = [self.visit(elt) for elt in node.elts]
return elts
# By design, only non-kernel functions can return
def visit_Return(self, node):
ret_value = self.visit(node.value)
# ret_block = self.builder.create_block()
# post_ret_block = self.builder.create_block()
# self.builder.create_branch(ret_block)
# self.builder.set_insertion_point_to_end(ret_block)
if ret_value is None:
self.builder.ret([])
ret_ty = None
elif isinstance(ret_value, tuple):
ret_values = [language.core._to_tensor(v, self.builder) for v in ret_value]
ret_types = [v.type for v in ret_values]
self.builder.ret([v.handle for v in ret_values])
ret_ty = tuple(ret_types)
else:
ret = language.core._to_tensor(ret_value, self.builder)
self.builder.ret([ret.handle])
ret_ty = ret.type
# self.builder.create_branch(post_ret_block)
# self.builder.set_insertion_point_to_end(post_ret_block)
return ret_ty
def visit_FunctionDef(self, node):
arg_names, kwarg_names = self.visit(node.args)
if self.fn:
raise UnsupportedLanguageConstruct(None, node, "nested function definition is not supported.")
# initialize defaults
for i, default_value in enumerate(node.args.defaults):
arg_node = node.args.args[-i - 1]
annotation = arg_node.annotation
name = arg_node.arg
st_target = ast.Name(id=name, ctx=ast.Store())
if annotation is None:
init_node = ast.Assign(targets=[st_target], value=default_value)
else:
init_node = ast.AnnAssign(target=st_target, value=default_value, annotation=annotation)
self.visit(init_node)
# initialize function
visibility = "public" if self.is_kernel else "private"
self.fn = self.builder.get_or_insert_function(self.module, self.function_name,
self.prototype.to_ir(self.builder), visibility, self.noinline)
self.module.push_back(self.fn)
entry = self.fn.add_entry_block()
arg_values = []
idx = 0
for i, arg_name in enumerate(arg_names):
if i in self.constants:
cst = self.constants[i]
if not _is_constexpr(cst):
cst = constexpr(self.constants[i])
arg_values.append(cst)
continue
else:
if i in self.attributes:
for name, value in self.attributes[i]:
self.fn.set_arg_attr(idx, name, value)
arg_values.append(tensor(self.fn.args(idx), self.prototype.param_types[idx]))
idx += 1
insert_pt = self.builder.get_insertion_block()
for arg_name, arg_value in zip(arg_names, arg_values):
self.set_value(arg_name, arg_value)
self.builder.set_insertion_point_to_start(entry)
# visit function body
self.visit_compound_statement(node.body)
# finalize function
if self.last_ret_type is None:
self.builder.ret([])
else:
# update return type
if isinstance(self.last_ret_type, tuple):
self.prototype.ret_types = list(self.last_ret_type)
self.fn.reset_type(self.prototype.to_ir(self.builder))
else:
self.prototype.ret_types = [self.last_ret_type]
self.fn.reset_type(self.prototype.to_ir(self.builder))
if insert_pt:
self.builder.set_insertion_point_to_end(insert_pt)
# Remove dead code
self.fn.finalize()
def visit_arguments(self, node):
arg_names = []
for arg in node.args:
arg_names += [self.visit(arg)]
kwarg_names = self.visit(node.kwarg)
return arg_names, kwarg_names
def visit_arg(self, node):
ast.NodeVisitor.generic_visit(self, node)
return node.arg
def visit_AnnAssign(self, node):
# extract attributes
annotation = self.visit(node.annotation)
target = self.visit(node.target)
value = self.visit(node.value)
# constexpr
if annotation == constexpr:
if target in self.lscope:
raise ValueError(f'{target} is already defined.'
f' constexpr cannot be reassigned.')
if not _is_constexpr(value):
value = constexpr(value)
self.lscope[target] = value
return self.lscope[target]
# default: call visit_Assign
return self.visit_Assign(node)
def visit_Assign(self, node):
_names = []
for target in node.targets:
_names += [self.visit(target)]
if len(_names) > 1:
raise UnsupportedLanguageConstruct(None, node, "simultaneous multiple assignment is not supported.")
names = _names[0]
values = self.visit(node.value)
if not _is_list_like(names):
names = [names]
if not _is_list_like(values):
values = [values]
native_nontensor_types = (language.dtype, )
for name, value in zip(names, values):
# by default, constexpr are assigned into python variable
value = _unwrap_if_constexpr(value)
if value is not None and \
not _is_triton_tensor(value) and \
not isinstance(value, native_nontensor_types):
value = language.core._to_tensor(value, self.builder)
self.set_value(name, value)
def visit_AugAssign(self, node):
name = node.target.id
lhs = ast.Name(id=name, ctx=ast.Load())
rhs = ast.BinOp(lhs, node.op, node.value)
assign = ast.Assign(targets=[node.target], value=rhs)
self.visit(assign)
return self.dereference_name(name)
def visit_Name(self, node):
if type(node.ctx) == ast.Store:
return node.id
return self.dereference_name(node.id)
def visit_Store(self, node):
ast.NodeVisitor.generic_visit(self, node)
def visit_Load(self, node):
ast.NodeVisitor.generic_visit(self, node)
def visit_Tuple(self, node):
args = [self.visit(x) for x in node.elts]
return tuple(args)
def _apply_binary_method(self, method_name, lhs, rhs):
# TODO: raise something meaningful if getattr fails below, esp for reverse method
if _is_triton_tensor(lhs):
return getattr(lhs, method_name)(rhs, _builder=self.builder)
if _is_triton_tensor(rhs):
reverse_method_name = re.sub(r"__(.*)__", r"__r\1__", method_name)
return getattr(rhs, reverse_method_name)(lhs, _builder=self.builder)
return getattr(lhs, method_name)(rhs)
def visit_BinOp(self, node):
lhs = self.visit(node.left)
rhs = self.visit(node.right)
method_name = self._method_name_for_bin_op.get(type(node.op))
if method_name is None:
raise UnsupportedLanguageConstruct(
None, node, "AST binary operator '{}' is not (currently) implemented.".format(node.op.__name__))
return self._apply_binary_method(method_name, lhs, rhs)
_method_name_for_bin_op: Dict[Type[ast.operator], str] = {
ast.Add: '__add__',
ast.Sub: '__sub__',
ast.Mult: '__mul__',
ast.Div: '__truediv__',
ast.FloorDiv: '__floordiv__',
ast.Mod: '__mod__',
ast.Pow: '__pow__',
ast.LShift: '__lshift__',
ast.RShift: '__rshift__',
ast.BitAnd: '__and__',
ast.BitOr: '__or__',
ast.BitXor: '__xor__',
}
def visit_then_else_blocks(self, node, liveins, then_block, else_block):
# then block
self.builder.set_insertion_point_to_start(then_block)
self.visit_compound_statement(node.body)
then_block = self.builder.get_insertion_block()
then_defs = self.local_defs.copy()
# else block
else_defs = {}
if node.orelse:
self.builder.set_insertion_point_to_start(else_block)
self.lscope = liveins.copy()
self.local_defs = {}
self.visit_compound_statement(node.orelse)
else_defs = self.local_defs.copy()
else_block = self.builder.get_insertion_block()
# update block arguments
names = []
ret_types = []
ir_ret_types = []
# variables in livein whose value is updated in `if`
for name in liveins:
# check type
for defs, block_name in [(then_defs, 'then'), (else_defs, 'else')]:
if name in defs:
assert defs[name].type == liveins[name].type, \
f'initial value for `{name}` is of type {liveins[name].type}, '\
f'but the {block_name} block redefines it as {defs[name].type}'
if name in then_defs or name in else_defs:
names.append(name)
ret_types.append(then_defs[name].type if name in then_defs else else_defs[name].type)
ir_ret_types.append(then_defs[name].handle.get_type() if name in
then_defs else else_defs[name].handle.get_type())
# variable defined in then but not in else
if name in then_defs and name not in else_defs:
else_defs[name] = liveins[name]
# variable defined in else but not in then
if name in else_defs and name not in then_defs:
then_defs[name] = liveins[name]
# variables that are both in then and else but not in liveins
# TODO: could probably be cleaned up
for name in then_defs.keys() & else_defs.keys():
if name in names:
continue
then_ty = then_defs[name].type
else_ty = else_defs[name].type
assert then_ty == else_ty, \
f'mismatched type for {name} between then block ({then_ty}) '\
f'and else block ({else_ty})'
names.append(name)
ret_types.append(then_ty)
ir_ret_types.append(then_defs[name].handle.get_type())
return then_defs, else_defs, then_block, else_block, names, ret_types, ir_ret_types
def visit_if_top_level(self, cond, node):
has_endif_block = True
with enter_sub_region(self) as sr:
liveins, ip_block = sr
then_block = self.builder.create_block()
else_block = self.builder.create_block()
# create basic-block after conditional
endif_block = self.builder.create_block()
# create branch
self.builder.set_insertion_point_to_end(ip_block)
self.builder.create_cond_branch(cond.handle, then_block, else_block)
# visit then and else blocks
then_defs, else_defs, then_block, else_block, names, ret_types, ir_ret_types = \
self.visit_then_else_blocks(node, liveins, then_block, else_block)
# then terminator
self.builder.set_insertion_point_to_end(then_block)
if then_block.has_return() and else_block.has_return():
has_endif_block = False
endif_block.erase()
if not then_block.has_terminator() and has_endif_block:
self.builder.create_branch(endif_block, [then_defs[n].handle for n in names])
# else terminator
self.builder.set_insertion_point_to_end(else_block)
if not else_block.has_terminator() and has_endif_block:
self.builder.create_branch(endif_block, [else_defs[n].handle for n in names])
if has_endif_block:
for ty in ir_ret_types:
endif_block.add_argument(ty)
if has_endif_block:
# change block
self.builder.set_insertion_point_to_start(endif_block)
# update value
for i, name in enumerate(names):
new_tensor = language.core.tensor(endif_block.arg(i), ret_types[i])
self.set_value(name, new_tensor)
# TODO: refactor
def visit_if_scf(self, cond, node):
with enter_sub_region(self) as sr:
liveins, _ = sr
ip, last_loc = self._get_insertion_point_and_loc()
then_block = self.builder.create_block()
else_block = self.builder.create_block() if node.orelse else None
then_defs, else_defs, then_block, else_block, names, ret_types, _ = \
self.visit_then_else_blocks(node, liveins, then_block, else_block)
# create if op
self._set_insertion_point_and_loc(ip, last_loc)
if_op = self.builder.create_if_op([ty.to_ir(self.builder) for ty in ret_types], cond.handle, True)
then_block.merge_block_before(if_op.get_then_block())
self.builder.set_insertion_point_to_end(if_op.get_then_block())
if len(names) > 0:
self.builder.create_yield_op([then_defs[n].handle for n in names])
if not node.orelse:
else_block = if_op.get_else_block()
else:
else_block.merge_block_before(if_op.get_else_block())
self.builder.set_insertion_point_to_end(if_op.get_else_block())
if len(names) > 0:
self.builder.create_yield_op([else_defs[n].handle for n in names])
# update values
for i, name in enumerate(names):
new_tensor = language.core.tensor(if_op.get_result(i), ret_types[i])
self.set_value(name, new_tensor)
def visit_If(self, node):
cond = self.visit(node.test)
if _is_triton_tensor(cond):
cond = cond.to(language.int1, _builder=self.builder)
contains_return = ContainsReturnChecker(self.gscope).visit(node)
if self.scf_stack and contains_return:
raise UnsupportedLanguageConstruct(
None, node, "Cannot have `return` statements inside `while` or `for` statements in triton "
"(note that this also applies to `return` statements that are inside functions "
"transitively called from within `while`/`for` statements)")
elif self.scf_stack or not contains_return:
self.visit_if_scf(cond, node)
else:
self.visit_if_top_level(cond, node)
else:
cond = _unwrap_if_constexpr(cond)
# not isinstance - we insist the real thing, no subclasses and no ducks
if type(cond) not in _condition_types:
raise UnsupportedLanguageConstruct(
None, node,
"`if` conditionals can only accept values of type {{{}}}, not objects of type {}".format(
', '.join(_.__name__ for _ in _condition_types),
type(cond).__name__))
if cond:
self.visit_compound_statement(node.body)
else:
self.visit_compound_statement(node.orelse)
def visit_IfExp(self, node):
cond = self.visit(node.test)
if _is_triton_tensor(cond):
cond = cond.to(language.int1, _builder=self.builder)
# TODO: Deal w/ more complicated return types (e.g tuple)
with enter_sub_region(self):
ip, last_loc = self._get_insertion_point_and_loc()
then_block = self.builder.create_block()
self.builder.set_insertion_point_to_start(then_block)
then_val = language.core._to_tensor(self.visit(node.body), self.builder)
then_block = self.builder.get_insertion_block()
else_block = self.builder.create_block()
self.builder.set_insertion_point_to_start(else_block)
# do not need to reset lscope since
# ternary expressions cannot define new variables
else_val = language.core._to_tensor(self.visit(node.orelse), self.builder)
else_block = self.builder.get_insertion_block()
self._set_insertion_point_and_loc(ip, last_loc)
assert then_val.type == else_val.type, \
f'ternary expression with dynamic condition has inconsistent types {then_val.type} and {else_val.type}'
ret_type = then_val.type
ret_type_ir = [ret_type.to_ir(self.builder)] if ret_type != language.void else []
if_op = self.builder.create_if_op(ret_type_ir, cond.handle, True)
then_block.merge_block_before(if_op.get_then_block())
if ret_type_ir:
self.builder.set_insertion_point_to_end(if_op.get_then_block())
self.builder.create_yield_op([then_val.handle])
self.builder.set_insertion_point_to_end(if_op.get_then_block())
else_block.merge_block_before(if_op.get_else_block())
if ret_type_ir:
self.builder.set_insertion_point_to_end(if_op.get_else_block())
self.builder.create_yield_op([else_val.handle])
return language.core.tensor(if_op.get_result(0), ret_type) if ret_type_ir else None
else:
cond = _unwrap_if_constexpr(cond)
# not isinstance - we insist the real thing, no subclasses and no ducks
if type(cond) not in _condition_types:
raise UnsupportedLanguageConstruct(
None, node,
"`if` conditionals can only accept values of type {{{}}}, not objects of type {}".format(
', '.join(_.__name__ for _ in _condition_types),
type(cond).__name__))
if cond:
return self.visit(node.body)
else:
return self.visit(node.orelse)
def visit_Pass(self, node):
pass
def visit_Compare(self, node):
if not (len(node.comparators) == 1 and len(node.ops) == 1):
raise UnsupportedLanguageConstruct(None, node, "simultaneous multiple comparison is not supported")
lhs = self.visit(node.left)
rhs = self.visit(node.comparators[0])
lhs_value = _unwrap_if_constexpr(lhs)
rhs_value = _unwrap_if_constexpr(rhs)
if type(node.ops[0]) == ast.Is:
return constexpr(lhs_value is rhs_value)
if type(node.ops[0]) == ast.IsNot:
return constexpr(lhs_value is not rhs_value)
method_name = self._method_name_for_comp_op.get(type(node.ops[0]))
if method_name is None:
raise UnsupportedLanguageConstruct(
None, node, "AST comparison operator '{}' is not (currently) implemented.".format(node.ops[0].__name__))
return self._apply_binary_method(method_name, lhs, rhs)
_method_name_for_comp_op: Dict[Type[ast.cmpop], str] = {
ast.Eq: '__eq__', ast.NotEq: '__ne__', ast.Lt: '__lt__', ast.LtE: '__le__', ast.Gt: '__gt__', ast.GtE: '__ge__'
}
def visit_UnaryOp(self, node):
op = self.visit(node.operand)
fn = self._method_name_for_unary_op.get(type(node.op))
if fn is None:
raise UnsupportedLanguageConstruct(
None, node, "AST unary operator '{}' is not (currently) implemented.".format(node.op.__name__))
if _is_triton_tensor(op):
return getattr(op, fn)(_builder=self.builder)
return getattr(op, fn)()
_method_name_for_unary_op: Dict[Type[ast.unaryop], str] = {
ast.USub: '__neg__', ast.UAdd: '__pos__', ast.Not: '__not__', ast.Invert: '__invert__'
}
def visit_While(self, node):
with enter_sub_region(self) as sr:
liveins, insert_block = sr
ip, last_loc = self._get_insertion_point_and_loc()
# loop body (the after region)
# loop_block = self.builder.create_block()
dummy = self.builder.create_block()
self.builder.set_insertion_point_to_start(dummy)
self.scf_stack.append(node)
self.visit_compound_statement(node.body)
self.scf_stack.pop()
loop_defs = self.local_defs
dummy.erase()
# collect loop-carried values
names = []
ret_types = []
init_args = []
for name in loop_defs:
if name in liveins:
# We should not def new constexpr
assert _is_triton_tensor(loop_defs[name]), f'cannoe reassign constxpr {name} in the loop'
assert _is_triton_tensor(liveins[name]), f'cannot reasign constexpr {name} in the loop'
assert loop_defs[name].type == liveins[name].type, \
f'Loop-carried variable {name} has initial type {liveins[name].type} '\
f'but is re-assigned to {loop_defs[name].type} in loop! '\
f'Please make sure that the type stays consistent.'
# these are loop-carried values
names.append(name)
ret_types.append(loop_defs[name].type)
init_args.append(liveins[name])
self._set_insertion_point_and_loc(ip, last_loc)
while_op = self.builder.create_while_op([ty.to_ir(self.builder) for ty in ret_types],
[arg.handle for arg in init_args])
# merge the condition region
before_block = self.builder.create_block_with_parent(while_op.get_before(),
[ty.to_ir(self.builder) for ty in ret_types])
self.builder.set_insertion_point_to_start(before_block)
for i, name in enumerate(names):
self.lscope[name] = language.core.tensor(before_block.arg(i), ret_types[i])
self.local_defs[name] = self.lscope[name]
cond = self.visit(node.test)
self.builder.set_insertion_point_to_end(before_block)
# create ConditionOp: e.g., scf.condition(%cond) %arg0, %arg1, ...
self.builder.create_condition_op(cond.handle, [before_block.arg(i) for i in range(len(init_args))])
# merge the loop body
after_block = self.builder.create_block_with_parent(while_op.get_after(),
[ty.to_ir(self.builder) for ty in ret_types])
# generate loop body
self.builder.set_insertion_point_to_start(after_block)
for i, name in enumerate(names):
self.lscope[name] = language.core.tensor(after_block.arg(i), ret_types[i])
self.local_defs[name] = self.lscope[name]
self.scf_stack.append(node)
self.visit_compound_statement(node.body)
self.scf_stack.pop()
loop_defs = self.local_defs
yields = []
for name in loop_defs:
if name in liveins:
yields.append(loop_defs[name])
self.builder.create_yield_op([y.handle for y in yields])
# WhileOp defines new values, update the symbol table (lscope, local_defs)
for i, name in enumerate(names):
new_def = language.core.tensor(while_op.get_result(i), ret_types[i])
self.lscope[name] = new_def
self.local_defs[name] = new_def
for stmt in node.orelse:
assert False, "Not implemented"
ast.NodeVisitor.generic_visit(self, stmt)
def visit_Subscript(self, node):
assert node.ctx.__class__.__name__ == "Load"
lhs = self.visit(node.value)
slices = self.visit(node.slice)
if _is_triton_tensor(lhs):
return lhs.__getitem__(slices, _builder=self.builder)
return lhs[slices]
def visit_ExtSlice(self, node):
return [self.visit(dim) for dim in node.dims]
def visit_For(self, node):
IteratorClass = self.visit(node.iter.func)
iter_args = [self.visit(arg) for arg in node.iter.args]
if IteratorClass == language.static_range:
iterator = IteratorClass(*iter_args)
static_range = range(iterator.start.value, iterator.end.value, iterator.step.value)
for i in static_range:
self.lscope[node.target.id] = constexpr(i)
self.visit_compound_statement(node.body)
for stmt in node.orelse:
ast.NodeVisitor.generic_visit(self, stmt)
return
if IteratorClass is not range:
raise RuntimeError('Only `range` and `static_range` iterators are currently supported')
# visit iterator arguments
# note: only `range` iterator is supported now
# collect lower bound (lb), upper bound (ub), and step
lb = iter_args[0] if len(iter_args) > 1 else self.visit(ast.Num(0))
ub = iter_args[1] if len(iter_args) > 1 else self.visit(node.iter.args[0])
step = iter_args[2] if len(iter_args) > 2 else self.visit(ast.Num(1))
# handle negative constant step (not supported by scf.for in MLIR)
negative_step = False
if _is_constexpr(step) and step.value < 0:
step = constexpr(-step.value)
negative_step = True
lb, ub = ub, lb
lb = language.core._to_tensor(lb, self.builder)
ub = language.core._to_tensor(ub, self.builder)
step = language.core._to_tensor(step, self.builder)
# induction variable type
if not lb.dtype.is_int() or not ub.dtype.is_int() or not step.dtype.is_int():
raise TypeError(f"For loop bounds and step must all be ints, are ({lb.dtype}, {ub.dtype}, {step.dtype})")
iv_type = language.semantic.integer_promote_impl(lb.dtype, ub.dtype)
iv_type = language.semantic.integer_promote_impl(iv_type, step.dtype)
iv_ir_type = iv_type.to_ir(self.builder)
iv_is_signed = iv_type.int_signedness == language.core.dtype.SIGNEDNESS.SIGNED
# lb/ub/step might be constexpr, we need to cast them to tensor
lb = lb.handle
ub = ub.handle
step = step.handle
# ForOp can only accept IndexType as lb/ub/step. Cast integer to Index
lb = self.builder.create_int_cast(lb, iv_ir_type, iv_is_signed)
ub = self.builder.create_int_cast(ub, iv_ir_type, iv_is_signed)
step = self.builder.create_int_cast(step, iv_ir_type, iv_is_signed)
# Create placeholder for the loop induction variable
iv = self.builder.create_undef(iv_ir_type)
self.set_value(node.target.id, language.core.tensor(iv, iv_type))
with enter_sub_region(self) as sr:
liveins, insert_block = sr
ip, last_loc = self._get_insertion_point_and_loc()
# create loop body block
block = self.builder.create_block()
self.builder.set_insertion_point_to_start(block)
# dry visit loop body
self.scf_stack.append(node)
self.visit_compound_statement(node.body)
self.scf_stack.pop()
block.erase()
# If a variable (name) is defined in both its parent & itself, then it's
# a loop-carried variable. (They must be of the same type)
init_args = []
yields = []
names = []
for name in self.local_defs:
if name in liveins:
assert _is_triton_tensor(self.local_defs[name]), f'{name} is not tensor'
assert _is_triton_tensor(liveins[name])
assert self.local_defs[name].type == liveins[name].type, \
f'Loop-carried variable {name} has initial type {liveins[name].type} '\
f'but is re-assigned to {self.local_defs[name].type} in loop! '\
f'Please make sure that the type stays consistent.'
names.append(name)
init_args.append(language.core._to_tensor(liveins[name], self.builder))
yields.append(language.core._to_tensor(self.local_defs[name], self.builder))
# create ForOp
self._set_insertion_point_and_loc(ip, last_loc)
for_op = self.builder.create_for_op(lb, ub, step, [arg.handle for arg in init_args])
self.scf_stack.append(node)
self.builder.set_insertion_point_to_start(for_op.get_body(0))
for i, name in enumerate(names):
self.set_value(name, language.core.tensor(for_op.get_body(0).arg(i + 1), yields[i].type))
self.visit_compound_statement(node.body)
self.scf_stack.pop()
yields = []
for name in self.local_defs:
if name in liveins:
yields.append(language.core._to_tensor(self.local_defs[name], self.builder))
# create YieldOp
if len(yields) > 0:
self.builder.create_yield_op([y.handle for y in yields])
for_op_region = for_op.get_body(0).get_parent()
assert for_op_region.size() == 1, "We use SCF, so the loop body should only have one block"
# update induction variable with actual value, and replace all uses
self.builder.set_insertion_point_to_start(for_op.get_body(0))
iv = for_op.get_induction_var()
if negative_step:
iv = self.builder.create_sub(ub, iv)
iv = self.builder.create_add(iv, lb)
self.lscope[node.target.id].handle.replace_all_uses_with(iv)
self.set_value(node.target.id, language.core.tensor(iv, iv_type))
# update lscope & local_defs (ForOp defines new values)
for i, name in enumerate(names):
self.set_value(name, language.core.tensor(for_op.get_result(i), yields[i].type))
for stmt in node.orelse:
assert False, "Don't know what to do with else after for"
ast.NodeVisitor.generic_visit(self, stmt)
def visit_Slice(self, node):
lower = self.visit(node.lower)
upper = self.visit(node.upper)
step = self.visit(node.step)
return slice(lower, upper, step)
def visit_Index(self, node):
return self.visit(node.value)
def visit_keyword(self, node) -> Tuple[str, Any]:
return node.arg, self.visit(node.value)
def visit_Assert(self, node) -> Any:
if not self.debug:
return
test = self.visit(node.test)
msg = self.visit(node.msg)
# Convert assert to triton's device_assert which happens on the device
return language.core.device_assert(test, msg, _builder=self.builder)
def call_JitFunction(self, fn: JITFunction, args, kwargs):
args = inspect.getcallargs(fn.fn, *args, **kwargs)
args = [args[name] for name in fn.arg_names]
args = [arg if _is_triton_tensor(arg) else constexpr(arg) for arg in args]
# generate function def
attributes = dict()
constexprs = [i for i, arg in enumerate(args) if _is_constexpr(arg)]
constants = {i: args[i] for i in constexprs}
# generate call
args = [None if i in constexprs else arg for i, arg in enumerate(args)]
arg_vals = [arg.handle for arg in args if arg is not None]
arg_types = [arg.type for arg in args if arg is not None]
fn_name = mangle_fn(fn.__name__, arg_types, constants)
# generate function def if necessary
if not self.module.has_function(fn_name):
prototype = language.function_type([], arg_types)
gscope = sys.modules[fn.fn.__module__].__dict__
# If the callee is not set, we use the same debug setting as the caller
debug = self.debug if fn.debug is None else fn.debug
file_name, begin_line = _get_fn_file_line(fn)
generator = CodeGenerator(self.context, prototype, gscope, attributes, constants, module=self.module,
function_name=fn_name, function_types=self.function_ret_types, debug=debug,
noinline=fn.noinline, file_name=file_name, begin_line=begin_line,
target=self.builder.target)
generator.visit(fn.parse())
callee_ret_type = generator.last_ret_type
self.function_ret_types[fn_name] = callee_ret_type
else:
callee_ret_type = self.function_ret_types[fn_name]
symbol = self.module.get_function(fn_name)
call_op = self.builder.call(symbol, arg_vals)
if call_op.get_num_results() == 0 or callee_ret_type is None:
return None
elif call_op.get_num_results() == 1:
return tensor(call_op.get_result(0), callee_ret_type)
else:
# should return a tuple of tl.tensor
results = []
for i in range(call_op.get_num_results()):
results.append(tensor(call_op.get_result(i), callee_ret_type[i]))
return tuple(results)
def visit_Call(self, node):
fn = _unwrap_if_constexpr(self.visit(node.func))
static_implementation = self.statically_implemented_functions.get(fn)
if static_implementation is not None:
return static_implementation(self, node)
kws = dict(self.visit(keyword) for keyword in node.keywords)
args = [self.visit(arg) for arg in node.args]
if fn is language.core.device_assert: # TODO: this should not be so hardcoded
if not self.debug:
return
if isinstance(fn, JITFunction):
_check_fn_args(node, fn, args)
return self.call_JitFunction(fn, args, kws)
if (hasattr(fn, '__self__') and _is_triton_tensor(fn.__self__)) or language.core.is_builtin(fn):
extra_kwargs = dict(_builder=self.builder)
sig = inspect.signature(fn)
if '_generator' in sig.parameters:
extra_kwargs['_generator'] = self
return fn(*args, **extra_kwargs, **kws)
if fn in self.builtin_namespace.values():
args = map(_unwrap_if_constexpr, args)
return fn(*args, **kws)
def visit_Constant(self, node):
return constexpr(node.value)
def visit_BoolOp(self, node: ast.BoolOp):
if len(node.values) != 2:
raise UnsupportedLanguageConstruct(
None, node,
"chained boolean operators (A or B or C) are not supported; use parentheses to split the chain.")
lhs = self.visit(node.values[0])
rhs = self.visit(node.values[1])
method_name = self._method_name_for_bool_op.get(type(node.op))
if method_name is None:
raise UnsupportedLanguageConstruct(
None, node, "AST boolean operator '{}' is not (currently) implemented.".format(node.op.__name__))
return self._apply_binary_method(method_name, lhs, rhs)
_method_name_for_bool_op: Dict[Type[ast.boolop], str] = {ast.And: 'logical_and', ast.Or: 'logical_or'}
if sys.version_info < (3, 8):
def visit_NameConstant(self, node):
return constexpr(node.value)
def visit_Num(self, node):
return constexpr(node.n)
def visit_Str(self, node):
return constexpr(ast.literal_eval(node))
def visit_Attribute(self, node):
lhs = self.visit(node.value)
if _is_triton_tensor(lhs):
if node.attr == "T":
return language.semantic.trans(lhs, builder=self.builder)
return getattr(lhs, node.attr)
def visit_Expr(self, node):
ast.NodeVisitor.generic_visit(self, node)
def visit_NoneType(self, node):
return None
def visit_JoinedStr(self, node):
values = list(node.values)
for i, value in enumerate(values):
if isinstance(value, ast.Constant):
values[i] = str(value.value)
elif isinstance(value, ast.FormattedValue):
conversion_code = value.conversion
evaluated = self.visit(value.value)
if not _is_constexpr(evaluated):
raise UnsupportedLanguageConstruct(
None, node,
"Cannot evaluate f-string containing non-constexpr conversion values, found conversion of type "
+ str(type(evaluated)))
values[i] = ("{}" if conversion_code < 0 else "{!" + chr(conversion_code) + "}").format(evaluated.value)
else:
raise AssertionError("encountered unexpected node of type {} in a JoinedStr node".format(type(value)))
return ''.join(values)
def visit(self, node):
if node is None:
return
with warnings.catch_warnings():
# The ast library added visit_Constant and deprecated some other
# methods but we can't move to that without breaking Python 3.6 and 3.7.
warnings.simplefilter("ignore", DeprecationWarning) # python 3.9
warnings.simplefilter("ignore", PendingDeprecationWarning) # python 3.8
self.last_node = node
last_loc = self.builder.get_loc()
if hasattr(node, 'lineno') and hasattr(node, 'col_offset'):
self.builder.set_loc(self.file_name, self.begin_line + node.lineno, node.col_offset)
last_loc = self.builder.get_loc()
ret = super().visit(node)
# Reset the location to the last one before the visit
if last_loc:
self.builder.set_loc(last_loc)
return ret
def generic_visit(self, node):
raise UnsupportedLanguageConstruct(None, node, "unsupported AST node type: {}".format(type(node).__name__))
def execute_static_print(self, node: ast.Call) -> None:
# TODO: too simplistic? Perhaps do something else with non-constexpr
kws = {name: _unwrap_if_constexpr(value) for name, value in (self.visit(keyword) for keyword in node.keywords)}
args = [_unwrap_if_constexpr(self.visit(arg)) for arg in node.args]
print(*args, **kws)
def execute_static_assert(self, node: ast.Call) -> None:
arg_count = len(node.args)
if not (0 < arg_count <= 2) or len(node.keywords):
raise TypeError("`static_assert` requires one or two positional arguments only")
passed = _unwrap_if_constexpr(self.visit(node.args[0]))
if not isinstance(passed, bool):
raise NotImplementedError(
"Assertion condition could not be determined at compile-time. Make sure that it depends only on `constexpr` values"
)
if not passed:
if arg_count == 1:
message = ""
else:
try:
message = self.visit(node.args[1])
except Exception as e:
message = "<failed to evaluate assertion message: " + repr(e) + ">"
raise CompileTimeAssertionFailure(None, node, _unwrap_if_constexpr(message))
return None
statically_implemented_functions: Dict[object, Callable[[ast.Call], Any]] = {
language.core.static_assert: execute_static_assert,
language.core.static_print: execute_static_print,
}
def str_to_ty(name):
if name[0] == "*":
ty = str_to_ty(name[1:])
return language.pointer_type(ty)
tys = {
"fp8e4nv": language.float8e4nv,
"fp8e5": language.float8e5,
"fp8e4b15": language.float8e4b15,
"fp8e4b15x4": language.float8e4b15x4,
"fp16": language.float16,
"bf16": language.bfloat16,
"fp32": language.float32,
"fp64": language.float64,
"i1": language.int1,
"i8": language.int8,
"i16": language.int16,
"i32": language.int32,
"i64": language.int64,
"u8": language.uint8,
"u16": language.uint16,
"u32": language.uint32,
"u64": language.uint64,
"B": language.int1,
}
return tys[name]
def kernel_suffix(signature, specialization):
# suffix format:
# <argid><'c' if equal to 1><'d' if divisible by 16><'e' if divisible by 8>
suffix = ''
for i, _ in enumerate(signature):
suffix += str(i)
if i in specialization.equal_to_1:
suffix += 'c'
if i in specialization.divisible_by_16:
suffix += 'd'
if i in specialization.divisible_by_8:
suffix += 'e'
return suffix
def ast_to_ttir(fn, signature, specialization, constants, debug, target):
# canonicalize signature
if isinstance(signature, str):
signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
context = ir.context()
context.load_triton()
# create kernel prototype
cst_key = lambda i: fn.arg_names.index(i) if isinstance(i, str) else i
constants = {cst_key(key): value for key, value in constants.items()}
# visit kernel AST
gscope = fn.__globals__.copy()
function_name = '_'.join([fn.__name__, kernel_suffix(signature.values(), specialization)])
tys = list(signature.values())
new_constants = {k: True if k in tys and tys[k] == "i1" else 1 for k in specialization.equal_to_1}
new_attrs = {k: [("tt.divisibility", 16)] for k in specialization.divisible_by_16}
# Note: Here we defines 'max_divisibility' for later TMA usage.
# fp16 requires 'max_divisibility >= 8' and fp8 requires 'max_divisibility >= 16'.
# Since we only need to support TMA for fp16 and fp8 now, 'max_divisibility' is either 8 or 16.
for k in specialization.divisible_by_8:
attr = new_attrs[k] if k in new_attrs else []
if k in specialization.divisible_by_16:
attr.append(("tt.max_divisibility", 16))
else:
attr.append(("tt.max_divisibility", 8))
new_attrs[k] = attr
all_constants = constants.copy()
all_constants.update(new_constants)
arg_types = [str_to_ty(v) for k, v in signature.items() if k not in constants]
file_name, begin_line = _get_fn_file_line(fn)
prototype = language.function_type([], arg_types)
generator = CodeGenerator(context, prototype, gscope=gscope, constants=all_constants, function_name=function_name,
attributes=new_attrs, is_kernel=True, debug=debug, file_name=file_name,
begin_line=begin_line, target=target)
try:
generator.visit(fn.parse())
except CompilationError as e:
if e.src is None:
e.set_source_code(fn.src)
raise
except Exception as e:
node = generator.last_node
if node is None:
raise
raise CompilationError(fn.src, node, repr(e)) from e
ret = generator.module
# module takes ownership of the context
ret.context = context
return ret