Viewing File: /home/ubuntu/efiexchange-node-base/node_modules/ecurve/lib/point.js
var assert = require('assert')
var Buffer = require('safe-buffer').Buffer
var BigInteger = require('bigi')
var THREE = BigInteger.valueOf(3)
function Point (curve, x, y, z) {
assert.notStrictEqual(z, undefined, 'Missing Z coordinate')
this.curve = curve
this.x = x
this.y = y
this.z = z
this._zInv = null
this.compressed = true
}
Object.defineProperty(Point.prototype, 'zInv', {
get: function () {
if (this._zInv === null) {
this._zInv = this.z.modInverse(this.curve.p)
}
return this._zInv
}
})
Object.defineProperty(Point.prototype, 'affineX', {
get: function () {
return this.x.multiply(this.zInv).mod(this.curve.p)
}
})
Object.defineProperty(Point.prototype, 'affineY', {
get: function () {
return this.y.multiply(this.zInv).mod(this.curve.p)
}
})
Point.fromAffine = function (curve, x, y) {
return new Point(curve, x, y, BigInteger.ONE)
}
Point.prototype.equals = function (other) {
if (other === this) return true
if (this.curve.isInfinity(this)) return this.curve.isInfinity(other)
if (this.curve.isInfinity(other)) return this.curve.isInfinity(this)
// u = Y2 * Z1 - Y1 * Z2
var u = other.y.multiply(this.z).subtract(this.y.multiply(other.z)).mod(this.curve.p)
if (u.signum() !== 0) return false
// v = X2 * Z1 - X1 * Z2
var v = other.x.multiply(this.z).subtract(this.x.multiply(other.z)).mod(this.curve.p)
return v.signum() === 0
}
Point.prototype.negate = function () {
var y = this.curve.p.subtract(this.y)
return new Point(this.curve, this.x, y, this.z)
}
Point.prototype.add = function (b) {
if (this.curve.isInfinity(this)) return b
if (this.curve.isInfinity(b)) return this
var x1 = this.x
var y1 = this.y
var x2 = b.x
var y2 = b.y
// u = Y2 * Z1 - Y1 * Z2
var u = y2.multiply(this.z).subtract(y1.multiply(b.z)).mod(this.curve.p)
// v = X2 * Z1 - X1 * Z2
var v = x2.multiply(this.z).subtract(x1.multiply(b.z)).mod(this.curve.p)
if (v.signum() === 0) {
if (u.signum() === 0) {
return this.twice() // this == b, so double
}
return this.curve.infinity // this = -b, so infinity
}
var v2 = v.square()
var v3 = v2.multiply(v)
var x1v2 = x1.multiply(v2)
var zu2 = u.square().multiply(this.z)
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.p)
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.p)
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.p)
return new Point(this.curve, x3, y3, z3)
}
Point.prototype.twice = function () {
if (this.curve.isInfinity(this)) return this
if (this.y.signum() === 0) return this.curve.infinity
var x1 = this.x
var y1 = this.y
var y1z1 = y1.multiply(this.z).mod(this.curve.p)
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.p)
var a = this.curve.a
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE)
if (a.signum() !== 0) {
w = w.add(this.z.square().multiply(a))
}
w = w.mod(this.curve.p)
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.p)
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.p)
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.p)
return new Point(this.curve, x3, y3, z3)
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
Point.prototype.multiply = function (k) {
if (this.curve.isInfinity(this)) return this
if (k.signum() === 0) return this.curve.infinity
var e = k
var h = e.multiply(THREE)
var neg = this.negate()
var R = this
for (var i = h.bitLength() - 2; i > 0; --i) {
var hBit = h.testBit(i)
var eBit = e.testBit(i)
R = R.twice()
if (hBit !== eBit) {
R = R.add(hBit ? this : neg)
}
}
return R
}
// Compute this*j + x*k (simultaneous multiplication)
Point.prototype.multiplyTwo = function (j, x, k) {
var i = Math.max(j.bitLength(), k.bitLength()) - 1
var R = this.curve.infinity
var both = this.add(x)
while (i >= 0) {
var jBit = j.testBit(i)
var kBit = k.testBit(i)
R = R.twice()
if (jBit) {
if (kBit) {
R = R.add(both)
} else {
R = R.add(this)
}
} else if (kBit) {
R = R.add(x)
}
--i
}
return R
}
Point.prototype.getEncoded = function (compressed) {
if (compressed == null) compressed = this.compressed
if (this.curve.isInfinity(this)) return Buffer.alloc(1, 0) // Infinity point encoded is simply '00'
var x = this.affineX
var y = this.affineY
var byteLength = this.curve.pLength
var buffer
// 0x02/0x03 | X
if (compressed) {
buffer = Buffer.allocUnsafe(1 + byteLength)
buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0)
// 0x04 | X | Y
} else {
buffer = Buffer.allocUnsafe(1 + byteLength + byteLength)
buffer.writeUInt8(0x04, 0)
y.toBuffer(byteLength).copy(buffer, 1 + byteLength)
}
x.toBuffer(byteLength).copy(buffer, 1)
return buffer
}
Point.decodeFrom = function (curve, buffer) {
var type = buffer.readUInt8(0)
var compressed = (type !== 4)
var byteLength = Math.floor((curve.p.bitLength() + 7) / 8)
var x = BigInteger.fromBuffer(buffer.slice(1, 1 + byteLength))
var Q
if (compressed) {
assert.equal(buffer.length, byteLength + 1, 'Invalid sequence length')
assert(type === 0x02 || type === 0x03, 'Invalid sequence tag')
var isOdd = (type === 0x03)
Q = curve.pointFromX(isOdd, x)
} else {
assert.equal(buffer.length, 1 + byteLength + byteLength, 'Invalid sequence length')
var y = BigInteger.fromBuffer(buffer.slice(1 + byteLength))
Q = Point.fromAffine(curve, x, y)
}
Q.compressed = compressed
return Q
}
Point.prototype.toString = function () {
if (this.curve.isInfinity(this)) return '(INFINITY)'
return '(' + this.affineX.toString() + ',' + this.affineY.toString() + ')'
}
module.exports = Point
Back to Directory
File Manager